求下列积 \( \frac{-4}{27} x y z\left[\frac{9}{2} x^{2} y z-\frac{3}{4} x y z^{2}\right] \)
已知
\( \frac{-4}{27} x y z\left[\frac{9}{2} x^{2} y z-\frac{3}{4} x y z^{2}\right] \)
要求
我们需要求出给定的积。
解答
$\frac{-4}{27} x y z[\frac{9}{2} x^{2} y z-\frac{3}{4} x y z^{2}] =(\frac{-4}{27} x y z \times \frac{9}{2} x^{2} y z)+(\frac{-4}{27} x y z \times \frac{-3}{4} x y z^{2})$
$=\frac{-2}{3} x^{1+2} \times y^{1+1} \times z^{1+1}+\frac{1}{9} x^{1+1} \times y^{1+1} \times z^{1+2}$
$=\frac{-2}{3} x^{3} y^{2} z^{2}+\frac{1}{9} x^{2} y^{2} z^{3}$
相关文章 求下列积:\( \frac{-8}{27} x y z\left(\frac{3}{2} x y z^{2}-\frac{9}{4} x y^{2} z^{3}\right) \)
化简下列每个表达式:\( (x+y+z)^{2}+\left(x+\frac{y}{2}+\frac{z}{3}\right)^{2}-\left(\frac{x}{2}+\frac{y}{3}+\frac{z}{4}\right)^{2} \)
验证 \( x^{3}+y^{3}+z^{3}-3 x y z=\frac{1}{2}(x+y+z)\left[(x-y)^{2}+(y-z)^{2}+(z-x)^{2}\right] \)
求 $(-3 x y z)(\frac{4}{9} x^{2} z)(-\frac{27}{2} x y^{2} z)$ 的积,并验证结果,其中;$x=2, y=3$ 和 $z=-1$
因式分解下列每个表达式:\( \left(\frac{x}{2}+y+\frac{z}{3}\right)^{3}+\left(\frac{x}{3}-\frac{2 y}{3}+z\right)^{3} +\left(-\frac{5 x}{6}-\frac{y}{3}-\frac{4 z}{3}\right)^{3} \)
求下列积:\( \left(\frac{x}{2}+2 y\right)\left(\frac{x^{2}}{4}-x y+4 y^{2}\right) \)
证明:\( \left(\frac{a^{x+1}}{a^{y+1}}\right)^{x+y}\left(\frac{a^{y+2}}{a^{z+2}}\right)^{y+z}\left(\frac{a^{z+3}}{a^{x+3}}\right)^{z+x}=1 \)
求下列积。\( \left(\frac{-7}{5} x y^{2} z\right) \times\left(\frac{13}{3} x^{2} y z^{2}\right) \)
求下列积。\( (0.5 x) \times\left(\frac{1}{3} x y^{2} z^{4}\right) \times\left(-24 x^{2} y z\right) \)
验证有理数加法的结合律,即 $(x + y) + z = x + (y + z)$,其中:(i) \( x=\frac{1}{2}, y=\frac{2}{3}, z=-\frac{1}{5} \)(ii) \( x=\frac{-2}{5}, y=\frac{4}{3}, z=\frac{-7}{10} \)(iii) \( x=\frac{-7}{11}, y=\frac{2}{-5}, z=\frac{-3}{22} \)(iv) \( x=-2, y=\frac{3}{5}, z=\frac{-4}{3} \)
\( \left(\frac{x}{2}+\frac{3 y}{4}\right)\left(\frac{x}{2}+\frac{3 y}{4}\right) \)
求下列积。\( (-7 x y) \times\left(\frac{1}{4} x^{2} y z\right) \)
求下列积:\( \left(\frac{3}{x}-\frac{5}{y}\right)\left(\frac{9}{x^{2}}+\frac{25}{y^{2}}+\frac{15}{x y}\right) \)
验证:$x\times(y\times z)=(x\times y)\times z$,其中 $x=\frac{1}{2},\ y=\frac{1}{3}$ 和 $z=\frac{1}{4}$。
验证性质:$x \times (y \times z) = (x \times y) \times z$,取:(i) \( x=\frac{-7}{3}, y=\frac{12}{5}, z=\frac{4}{9} \)(ii) \( x=0, y=\frac{-3}{5}, z=\frac{-9}{4} \)(iii) \( x=\frac{1}{2}, y=\frac{5}{-4}, z=\frac{-7}{5} \)(iv) \( x=\frac{5}{7}, y=\frac{-12}{13}, z=\frac{-7}{18} \)
开启你的 职业生涯
通过完成课程获得认证
开始学习