(i) \( x^{2}-3 x+5-\frac{1}{2}\left(3 x^{2}-5 x+7\right) \)(ii) \( [5-3 x+2 y-(2 x-y)]-(3 x-7 y+9) \)(iii) \( \frac{11}{2} x^{2} y-\frac{9}{4} x y^{2}+\frac{1}{4} x y-\frac{1}{14} y^{2} x+\frac{1}{15} y x^{2}+ \) \( \frac{1}{2} x y \)(iv) \( \left(\frac{1}{3} y^{2}-\frac{4}{7} y+11\right)-\left(\frac{1}{7} y-3+2 y^{2}\right)- \) \( \left(\frac{2}{7} y-\frac{2}{3} y^{2}+2\right) \)(v) \( -\frac{1}{2} a^{2} b^{2} c+\frac{1}{3} a b^{2} c-\frac{1}{4} a b c^{2}-\frac{1}{5} c b^{2} a^{2}+ \) \( \frac{1}{6} c b^{2} a+\frac{1}{7} c^{2} a b+\frac{1}{8} c a^{2} b \).
To do:
We have to solve the given expressions.
Solution:
(i) $x^{2}-3 x+5-\frac{1}{2}(3 x^{2}-5 x+7) =x^{2}-3 x+5-\frac{3}{2} x^{2}+\frac{5}{2} x-\frac{7}{2}$
$=x^{2}-\frac{3}{2} x^{2}-3 x+\frac{5}{2} x+5-\frac{7}{2}$
$=(1-\frac{3}{2}) x^{2}-(3-\frac{5}{2}) x+(\frac{5}{1}-\frac{7}{2})$
$=\frac{2-3}{2} x^{2}-\frac{6-5}{2} x+\frac{10-7}{2}$
$=\frac{-1}{2} x^{2}-\frac{1}{2} x+\frac{3}{2}$
(ii) $[5-3 x+2 y-(2 x-y)]-(3 x-7 y+9)=[5-3 x+2 y-2 x+y]-(3 x-7 y+9)$
$=5-3 x+2 y-2 x+y-3 x+7 y-9$
$=5-9-3 x-2 x-3 x+2 y+y+7 y$
$=-4-8 x+10 y$
(iii) $\frac{11}{2} x^{2} y-\frac{9}{4} x y^{2}+\frac{1}{4} x y-\frac{1}{14} y^{2} x+\frac{1}{15} y x^{2}+\frac{1}{2} x y=\frac{11}{2} x^{2} y+\frac{1}{15} y x^{2}-\frac{9}{4} x y^{2}-\frac{1}{14} y^{2} x+\frac{1}{4} x y+\frac{1}{2} x y$
$=(\frac{165+2}{30}) x^{2} y+(\frac{-63-2}{28}) x y^{2}+(\frac{1+2}{4}) x y$
$=\frac{167}{30} x^{2} y-\frac{65}{28} y^{2} x+\frac{3}{2} x y$
(iv) $(\frac{1}{3} y^{2}-\frac{4}{7} y+11)-(\frac{1}{7} y-3+2 y^{2})-(\frac{2}{7} y-\frac{2}{3} y^{2}+2)=\frac{1}{3} y^{2}-\frac{4}{7} y+11-\frac{1}{7} y+3-2 y^{2}-\frac{2}{7} y+\frac{2}{3} y^{2}-2$
$=\frac{1}{3} y^{2}-2 y^{2}+\frac{2}{3} y^{2}-\frac{4}{7} y-\frac{1}{7} y-\frac{2}{7} y+11+3-2$
$=(\frac{1-6+2}{3}) y^{2}+(\frac{-4-1-2}{7}) y+12$
$=-y^{2}-7 y+12$
(v) $-\frac{1}{2} a^{2} b^{2} c+\frac{1}{3} a b^{2} c-\frac{1}{4} a b c^{2}-\frac{1}{5} c b^{2} a^{2}+\frac{1}{6} c b^{2} a-\frac{1}{7} c^{2} a b+\frac{1}{8} c a^{2} b=-\frac{1}{2} a^{2} b^{2} c-\frac{1}{5} a^{2} b^{2} c+\frac{1}{3} a b^{2} c+\frac{1}{6} a b^{2} c-\frac{1}{4} a b c^{2}-\frac{1}{7} a b c^{2}+\frac{1}{8} c a^{2} b$
$=(\frac{1}{2}-\frac{1}{5}) a^{2} b^{2} c+(\frac{1}{3}+\frac{1}{6}) a b^{2} c-(\frac{1}{4}+\frac{1}{7}) a b c^2+\frac{1}{8} a^{2} b c$
$=\frac{-5-2}{10} a^{2} b^{2} c+\frac{2+1}{6} a b^{2} c-\frac{7+4}{28} a b c^{2}+\frac{1}{8} a^{2} b c$
$=\frac{-7}{10} a^{2} b^{2} c+\frac{3}{6} a b^{2} c-\frac{11}{28} a b c^{2}+\frac{1}{8} a^{2} b c$
$=\frac{-7}{10} a^{2} b^{2} c+\frac{1}{2} a b^{2} c-\frac{11}{28} a b c^{2}+\frac{1}{8} a^{2} b c$
Related Articles Add the following algebraic expressions(i) \( 3 a^{2} b,-4 a^{2} b, 9 a^{2} b \)(ii) \( \frac{2}{3} a, \frac{3}{5} a,-\frac{6}{5} a \)(iii) \( 4 x y^{2}-7 x^{2} y, 12 x^{2} y-6 x y^{2},-3 x^{2} y+5 x y^{2} \)(iv) \( \frac{3}{2} a-\frac{5}{4} b+\frac{2}{5} c, \frac{2}{3} a-\frac{7}{2} b+\frac{7}{2} c, \frac{5}{3} a+ \) \( \frac{5}{2} b-\frac{5}{4} c \)(v) \( \frac{11}{2} x y+\frac{12}{5} y+\frac{13}{7} x,-\frac{11}{2} y-\frac{12}{5} x-\frac{13}{7} x y \)(vi) \( \frac{7}{2} x^{3}-\frac{1}{2} x^{2}+\frac{5}{3}, \frac{3}{2} x^{3}+\frac{7}{4} x^{2}-x+\frac{1}{3} \) \( \frac{3}{2} x^{2}-\frac{5}{2} x-2 \)
\Find $(x +y) \div (x - y)$. if,(i) \( x=\frac{2}{3}, y=\frac{3}{2} \)(ii) \( x=\frac{2}{5}, y=\frac{1}{2} \)(iii) \( x=\frac{5}{4}, y=\frac{-1}{3} \)(iv) \( x=\frac{2}{7}, y=\frac{4}{3} \)(v) \( x=\frac{1}{4}, y=\frac{3}{2} \)
Solve the following pairs of equations by reducing them to a pair of linear equations:(i) \( \frac{1}{2 x}+\frac{1}{3 y}=2 \)\( \frac{1}{3 x}+\frac{1}{2 y}=\frac{13}{6} \)(ii) \( \frac{2}{\sqrt{x}}+\frac{3}{\sqrt{y}}=2 \)\( \frac{4}{\sqrt{x}}-\frac{9}{\sqrt{y}}=-1 \)(iii) \( \frac{4}{x}+3 y=14 \)\( \frac{3}{x}-4 y=23 \)(iv) \( \frac{5}{x-1}+\frac{1}{y-2}=2 \)\( \frac{6}{x-1}-\frac{3}{y-2}=1 \)(v) \( \frac{7 x-2 y}{x y}=5 \)\( \frac{8 x+7 y}{x y}=15 \),b>(vi) \( 6 x+3 y=6 x y \)\( 2 x+4 y=5 x y \)4(vii) \( \frac{10}{x+y}+\frac{2}{x-y}=4 \)\( \frac{15}{x+y}-\frac{5}{x-y}=-2 \)(viii) \( \frac{1}{3 x+y}+\frac{1}{3 x-y}=\frac{3}{4} \)\( \frac{1}{2(3 x+y)}-\frac{1}{2(3 x-y)}=\frac{-1}{8} \).
Simplify: \( \frac{11}{2} x^{2} y-\frac{9}{4} x y^{2}+\frac{1}{4} x y-\frac{1}{14} y^{2} x+\frac{1}{15} y x^{2}+\frac{1}{2} x y \).
Subtract:(i) $-5xy$ from $12xy$(ii) $2a^2$ from $-7a^2$(iii) \( 2 a-b \) from \( 3 a-5 b \)(iv) \( 2 x^{3}-4 x^{2}+3 x+5 \) from \( 4 x^{3}+x^{2}+x+6 \)(v) \( \frac{2}{3} y^{3}-\frac{2}{7} y^{2}-5 \) from \( \frac{1}{3} y^{3}+\frac{5}{7} y^{2}+y-2 \)(vi) \( \frac{3}{2} x-\frac{5}{4} y-\frac{7}{2} z \) from \( \frac{2}{3} x+\frac{3}{2} y-\frac{4}{3} z \)(vii) \( x^{2} y-\frac{4}{5} x y^{2}+\frac{4}{3} x y \) from \( \frac{2}{3} x^{2} y+\frac{3}{2} x y^{2}- \) \( \frac{1}{3} x y \)(viii) \( \frac{a b}{7}-\frac{35}{3} b c+\frac{6}{5} a c \) from \( \frac{3}{5} b c-\frac{4}{5} a c \)
Multiply:\( \left(3 x^{2} y-5 x y^{2}\right) \) by \( \left(\frac{1}{5} x^{2}+\frac{1}{3} y^{2}\right) \)
Find the product of the following binomials:(i) \( (2 x+y)(2 x+y) \)(ii) \( (a+2 b)(a-2 b) \)(iii) \( \left(a^{2}+b c\right)\left(a^{2}-b c\right) \)(iv) \( \left(\frac{4 x}{5}-\frac{3 y}{4}\right)\left(\frac{4 x}{5}+\frac{3 y}{4}\right) \)(v) \( \left(2 x+\frac{3}{y}\right)\left(2 x-\frac{3}{y}\right) \)(vi) \( \left(2 a^{3}+b^{3}\right)\left(2 a^{3}-b^{3}\right) \)(vii) \( \left(x^{4}+\frac{2}{x^{2}}\right)\left(x^{4}-\frac{2}{x^{2}}\right) \)(viii) \( \left(x^{3}+\frac{1}{x^{3}}\right)\left(x^{3}-\frac{1}{x^{3}}\right) \).
Take away:(i) \( \frac{6}{5} x^{2}-\frac{4}{5} x^{3}+\frac{5}{6}+\frac{3}{2} x \) from \( \frac{x^{3}}{3}-\frac{5}{2} x^{2}+ \) \( \frac{3}{5} x+\frac{1}{4} \)(ii) \( \frac{5 a^{2}}{2}+\frac{3 a^{3}}{2}+\frac{a}{3}-\frac{6}{5} \) from \( \frac{1}{3} a^{3}-\frac{3}{4} a^{2}- \) \( \frac{5}{2} \)(iii) \( \frac{7}{4} x^{3}+\frac{3}{5} x^{2}+\frac{1}{2} x+\frac{9}{2} \) from \( \frac{7}{2}-\frac{x}{3}- \) \( \frac{x^{2}}{5} \)(iv) \( \frac{y^{3}}{3}+\frac{7}{3} y^{2}+\frac{1}{2} y+\frac{1}{2} \) from \( \frac{1}{3}-\frac{5}{3} y^{2} \)(v) \( \frac{2}{3} a c-\frac{5}{7} a b+\frac{2}{3} b c \) from \( \frac{3}{2} a b-\frac{7}{4} a c- \) \( \frac{5}{6} b c \)
Write the following squares of bionomials as trinomials:(i)\( (x+2)^{2} \)(ii) \( (8 a+3 b)^{2} \)(iii) \( (2 m+1)^{2} \)(iv) \( \left(9 a+\frac{1}{6}\right)^{2} \)(v) \( \left(x+\frac{x^{2}}{2}\right)^{2} \)(vi) \( \left(\frac{x}{4}-\frac{y}{3}\right)^{2} \)(vii) \( \left(3 x-\frac{1}{3 x}\right)^{2} \)(viii) \( \left(\frac{x}{y}-\frac{y}{x}\right)^{2} \)(ix) \( \left(\frac{3 a}{2}-\frac{5 b}{4}\right)^{2} \)(x) \( \left(a^{2} b-b c^{2}\right)^{2} \)(xi) \( \left(\frac{2 a}{3 b}+\frac{2 b}{3 a}\right)^{2} \)(xii) \( \left(x^{2}-a y\right)^{2} \)
Evaluate each of the following when $x=2, y=-1$.\( \left(\frac{3}{5} x^{2} y\right) \times\left(\frac{-15}{4} x y^{2}\right) \times\left(\frac{7}{9} x^{2} y^{2}\right) \)
If $\frac{x+1}{y} = \frac{1}{2}, \frac{x}{y-2} = \frac{1}{2}$, find x and y.
Find the following products and verify the result for $x = -1, y = -2$:\( \left(\frac{1}{3} x-\frac{y^{2}}{5}\right)\left(\frac{1}{3} x+\frac{y^{2}}{5}\right) \)
\( \left(\frac{x}{2}+\frac{3 y}{4}\right)\left(\frac{x}{2}+\frac{3 y}{4}\right) \)
Expand each of the following, using suitable identities:(i) \( (x+2 y+4 z)^{2} \)(ii) \( (2 x-y+z)^{2} \)(iii) \( (-2 x+3 y+2 z)^{2} \)(iv) \( (3 a-7 b-c)^{2} \)(v) \( (-2 x+5 y-3 z)^{2} \)(vi) \( \left[\frac{1}{4} a-\frac{1}{2} b+1\right]^{2} \)
Verify associativity of addition of rational numbers i.e., $(x + y) + z = x + (y + z)$, when:(i) \( x=\frac{1}{2}, y=\frac{2}{3}, z=-\frac{1}{5} \)(ii) \( x=\frac{-2}{5}, y=\frac{4}{3}, z=\frac{-7}{10} \)(iii) \( x=\frac{-7}{11}, y=\frac{2}{-5}, z=\frac{-3}{22} \)(iv) \( x=-2, y=\frac{3}{5}, z=\frac{-4}{3} \)
Kickstart Your Career
Get certified by completing the course
Get Started