减法
(i) 从 12xy 中减去 −5xy
(ii) 从 −7a2 中减去 2a2
(iii) 从 3a−5b 中减去 2a−b
(iv) 从 4x3+x2+x+6 中减去2x3−4x2+3x+5
(v) 从 13y3+57y2+y−2 中减去 23y3−27y2−5
(vi) 从 23x+32y−43z 中减去32x−54y−72z
(vii) 从 23x2y+32xy2− 13xy 中减去 x2y−45xy2+43xy
(viii) 从 35bc−45ac 中减去 ab7−353bc+65ac
需要做的事情
我们需要计算给定代数表达式的差。
解答
(i) 12xy−(−5xy)=12xy+5xy
=17xy
(ii) −7a2−2a2=(−7−2)a2
=−9a2
(iii) (3a−5b)−(2a−b)=3a−5b−2a+b
=3a−2a−5b+b
=a−4b
(iv) (4x3+x2+x+6)−(2x3−4x2+3x+5)=4x3+x2+x+6−2x3+4x2−3x−5
=4x3−2x3+x2+4x2+x−3x+6−5
=2x3+5x2−2x+1
(v) (13y3+57y2+y−2)−(23y3−27y2−5)
=13y3+57y2+y−2−23y3+27y2+5
=13y3−23y3+57y2+27y2+y−2+5
=1−23y3+5+27y2+y+3
=−13y3+77y2+y+3
=−13y3+y2+y+3
(vi) (23x+32y−43z)−(32x−54y−72z)=23x+32y−43z−32x+54y+72z
=23x−32x+32y+54y−43z+72z
=4−96x+6+54y+−8+216z
=−56x+114y+136z
(vii) (23x2y+32xy2−13xy)=23x2y+32xy2−13xy−x2y+45xy2−43xy
=23x2y−x2y+32xy2+45xy2−13xy−43xy
=(23−1)x2y+(−32+45)xy2+(−13−43)xy
=2−33x2y+15+810xy2+−1−43xy
=2310xy2−53xy
(viii) (35bc−45ac)−(ab7−353bc+65ac)
=35bc−45ac−17ab+353bc−65ac
=35bc+353bc−45ac−65ac−17ab
=(35+353)bc+(−45−65)ac−17ab
=9+17515bc+−4−65ac−17ab
=18415bc−105ac−17ab
=−17ab−2ac+18415bc
=17ab+18415bc−2ac
- 相关文章
- 计算下列代数表达式的和(i) 3a2b,−4a2b,9a2b(ii) 23a,35a,−65a(iii) 4xy2−7x2y,12x2y−6xy2,−3x2y+5xy2(iv) 32a−54b+25c,23a−72b+72c,53a+ 52b−54c(v) 112xy+125y+137x,−112y−125x−137xy(vi) 72x3−12x2+53,32x3+74x2−x+13 32x2−52x−2
- 从…中减去:(i) 从 x33−52x2+ 35x+14 中减去 65x2−45x3+56+32x(ii) 从 13a3−34a2− 52 中减去 5a22+3a32+a3−65(iii) 从 72−x3− x25 中减去 74x3+35x2+12x+92(iv) 从 13−53y2 中减去 y33+73y2+12y+12(v) 从 32ab−74ac− 56bc 中减去 23ac−57ab+23bc
- 如果,求 (x+y)÷(x−y) 的值:(i) x=23,y=32(ii) x=25,y=12(iii) x=54,y=−13(iv) x=27,y=43(v) x=14,y=32
- 将下列方程组化为一元一次方程组,并求解:(i) 12x+13y=213x+12y=136(ii) 2√x+3√y=24√x−9√y=−1(iii) 4x+3y=143x−4y=23(iv) 5x−1+1y−2=26x−1−3y−2=1(v) 7x−2yxy=58x+7yxy=15,b>(vi) 6x+3y=6xy2x+4y=5xy4(vii) 10x+y+2x−y=415x+y−5x−y=−2(viii) 13x+y+13x−y=3412(3x+y)−12(3x−y)=−18.
- (i) x2−3x+5−12(3x2−5x+7)(ii) [5−3x+2y−(2x−y)]−(3x−7y+9)(iii) 112x2y−94xy2+14xy−114y2x+115yx2+ 12xy(iv) (13y2−47y+11)−(17y−3+2y2)− (27y−23y2+2)(v) −12a2b2c+13ab2c−14abc2−15cb2a2+ 16cb2a+17c2ab+18ca2b.
- 验证有理数加法的结合律,即 (x+y)+z=x+(y+z),其中:(i) x=12,y=23,z=−15(ii) x=−25,y=43,z=−710(iii) x=−711,y=2−5,z=−322(iv) x=−2,y=35,z=−43
- 解方程组:3x2−5y3=−2x3+y2=136
- 从 x33−52x2+35x+14 中减去 65x2−45x3+56+32x
- 计算下列二项式的积:(i) (2x+y)(2x+y)(ii) (a+2b)(a−2b)(iii) (a2+bc)(a2−bc)(iv) (4x5−3y4)(4x5+3y4)(v) (2x+3y)(2x−3y)(vi) (2a3+b3)(2a3−b3)(vii) (x4+2x2)(x4−2x2)(viii) (x3+1x3)(x3−1x3).
- 计算下列乘积:(i) (x+4)(x+7)(ii) (x−11)(x+4)(iii) (x+7)(x−5)(iv) (x−3)(x−2)(v) (y2−4)(y2−3)(vi) (x+43)(x+34)(vii) (3x+5)(3x+11)(viii) (2x2−3)(2x2+5)(ix) (z2+2)(z2−3)(x) (3x−4y)(2x−4y)(xi) (3x2−4xy)(3x2−3xy)(xii) (x+15)(x+5)(xiii) (z+34)(z+43)(xiv) (x2+4)(x2+9)(xv) (y2+12)(y2+6)(xvi) (y2+57)(y2−145)(xvii) (p2+16)(p2−14)
- (x2+3y4)(x2+3y4)
- 计算 −25x2y2(3x2−y2) 的积。
- 计算 (3x2y−5xy2) 与 (15x2+13y2) 的乘积。
- 将下列每个表达式因式分解:(x2+y+z3)3+(x3−2y3+z)3+(−5x6−y3−4z3)3
- 计算下列乘积:75x2y(35xy2+25x)