- Trending Categories
- Data Structure
- Networking
- RDBMS
- Operating System
- Java
- MS Excel
- iOS
- HTML
- CSS
- Android
- Python
- C Programming
- C++
- C#
- MongoDB
- MySQL
- Javascript
- PHP
- Physics
- Chemistry
- Biology
- Mathematics
- English
- Economics
- Psychology
- Social Studies
- Fashion Studies
- Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Solve the following pairs of equations by reducing them to a pair of linear equations:
(i) \( \frac{1}{2 x}+\frac{1}{3 y}=2 \)
\( \frac{1}{3 x}+\frac{1}{2 y}=\frac{13}{6} \)
(ii) \( \frac{2}{\sqrt{x}}+\frac{3}{\sqrt{y}}=2 \)
\( \frac{4}{\sqrt{x}}-\frac{9}{\sqrt{y}}=-1 \)
(iii) \( \frac{4}{x}+3 y=14 \)
\( \frac{3}{x}-4 y=23 \)
(iv) \( \frac{5}{x-1}+\frac{1}{y-2}=2 \)
\( \frac{6}{x-1}-\frac{3}{y-2}=1 \)
(v) \( \frac{7 x-2 y}{x y}=5 \)
\( \frac{8 x+7 y}{x y}=15 \)
,b>(vi) \( 6 x+3 y=6 x y \)
\( 2 x+4 y=5 x y \)4
(vii) \( \frac{10}{x+y}+\frac{2}{x-y}=4 \)
\( \frac{15}{x+y}-\frac{5}{x-y}=-2 \)
(viii) \( \frac{1}{3 x+y}+\frac{1}{3 x-y}=\frac{3}{4} \)
\( \frac{1}{2(3 x+y)}-\frac{1}{2(3 x-y)}=\frac{-1}{8} \).
To do:
We have to solve the given pairs of equations by reducing them to a pair of linear equations.
Solution:
(i) $\frac{1}{2 x}+\frac{1}{3 y}=2$
$\frac{1}{3 x}+\frac{1}{2 y}=\frac{13}{6}$
Put $\frac{1}{x}=u$ and $\frac{1}{y}=v$ in equations (i) and (ii), we get,
$\frac{1}{2} u+\frac{1}{3} v=2$
$\Rightarrow \frac{3 u+2 v}{6}=2$
$\Rightarrow 3 u+2 v=12$.....(iii)
From equation (ii),
$\frac{1}{3} u+\frac{1}{2} v=\frac{13}{6}$
$\Rightarrow \frac{2 u+3 v}{6}=\frac{13}{6}$
$2u+3v=13$......(iv)
Solving (iii) and (iv), we get,
By cross multiplication method,
$\frac{u}{2(13)-3(12)} =\frac{v}{12(2)-13(3)}=\frac{-1}{3(3)-2(2)}$
$\frac{u}{-10}=\frac{v}{-15}=\frac{-1}{5}$
$\frac{u}{-10}=\frac{-1}{5}$ and $\frac{v}{-15}=\frac{-1}{5}$
$u=2, v=3$
Therefore,
$x=\frac{1}{u}=\frac{1}{2}$
$y=\frac{1}{v}=\frac{1}{3}$
(ii) $\frac{2}{\sqrt{x}}+\frac{3}{\sqrt{y}}=2$......(i)
$\frac{4}{\sqrt{x}}-\frac{9}{\sqrt{y}}=-1$.........(ii) Let $\frac{1}{\sqrt{x}}=u$ and $\frac{1}{\sqrt{y}}=v$
Put the above values in and (ii),
$2 u+3 v=2$......(iii)
$4u-9v=-1$........(iv)
$\frac{u}{-3+18}=\frac{v}{8+2}=\frac{-1}{-18-12}$
$\frac{u}{15}=\frac{v}{10}=\frac{1}{30}$
$u=\frac{1}{2}$ and $v=\frac{1}{3}$
$u=\frac{1}{\sqrt{x}}=\frac{1}{2}$
This implies,
$x=2^2$
$x=4$
$v=\frac{1}{\sqrt{y}}=\frac{1}{3}$
This implies,
$y=3^2$
$y=9$
(iii) $\frac{4}{x}+3 y=14$.......(i)
$\frac{3}{x}-4 y=23$.......(ii)
Let $\frac{1}{x}=u$
Put the above values in equations (i) and (ii),
$4u+3y=14$...........(iii)
$3u-4y=23$..........(iv)
$\frac{u}{69+56}=\frac{y}{42-92}=\frac{-1}{-16-9}$
$\frac{u}{125}=\frac{y}{-50}=\frac{-1}{-25}$
$u=\frac{125}{25}$
$u=5$
$y=\frac{-50}{25}$
$y=-2$
This implies,
$\frac{1}{x}=5$
$x=\frac{1}{5}$
$y=-2$
(iv) Let $\frac{1}{x-1}=u$ and $\frac{1}{y-2}=v$
This implies, the given system of equations can be written as,
$\frac{5}{x-1} +\frac{1}{y-2}=2$
$5u+v=2$
$5u+v-2=0$---(i)
$\frac{6}{x-1}-\frac{3}{y-2}=1$
$6u-3v=1$
$6u=1+3v$
$u=\frac{1+3v}{6}$---(ii)
Substituting $u=\frac{1+3v}{6}$ in equation (i), we get,
$5(\frac{1+3v}{6})+v-2=0$
$\frac{5(1+3v)}{6}=2-v$
$5+15v=6(2-v)$
$5+15v=12-6v$
$15v+6v=12-5$
$21v=7$
$v=\frac{7}{21}$
$v=\frac{1}{3}$
Using $v=\frac{1}{3}$ in equation (i), we get,
$5u+(\frac{1}{3})-2=0$
$5u+\frac{1-2\times3}{3}=0$
$5u+\frac{-5}{3}=0$
$5u=\frac{5}{3}$
$u=\frac{5}{5\times3}$
$u=\frac{1}{3}$
Using the values of $u$ and $v$, we get,
$\frac{1}{x-1}=\frac{1}{3}$
$\Rightarrow x-1=3$
$\Rightarrow x=3+1$
$\Rightarrow x=4$
$\frac{1}{y-2}=\frac{1}{3}$
$\Rightarrow y-2=3$
$\Rightarrow y=3+2$
$\Rightarrow y=5$
Therefore, the solution of the given system of equations is $x=4$ and $y=5$.
(v) \( \frac{7 x-2 y}{x y}=5 \).......(i)
\( \frac{8 x+7 y}{x y}=15 \)........(ii)
Let $\frac{1}{y}=u$ and $\frac{1}{x}=v$
Substitute the above values in (i) and (ii)
$7 u-2 v=5$........(iii)
$8 u+7 v=15$..........(iv)
$\frac{u}{-30-35}=\frac{y}{40-105}=\frac{-1}{49+16}$
$\frac{u}{-65}=\frac{y}{-65}=\frac{-1}{65}$
$u=\frac{65}{65}$
$u=1$
$v=\frac{65}{65}$
$v=1$
This implies,
$x=\frac{1}{v}=1$
$y=\frac{1}{u}=1$
(vi) \( 6 x+3 y=6 x y \)
Dividing by $xy$ on both sides,
$\frac{6x}{xy}+\frac{3y}{xy}=\frac{6xy}{xy}$
$\frac{6}{y}+\frac{3}{x}=6$......(i)
\( 2 x+4 y=5 x y \)
Dividing by $xy$ on both sides,
$\frac{2x}{xy}+\frac{4y}{xy}=\frac{5xy}{xy}$
$\frac{2}{y}+\frac{4}{x}=5$......(ii)
Let $\frac{1}{y}=u$ and $\frac{1}{x}=v$
Substitute the above values in (i) and (ii),
$6u+3v=6$......(iii)
$2u+4v=5$.........(iv)
By cross multiplication method, we get,
$\frac{u}{15-24}=\frac{v}{12-30}=\frac{-1}{24-6}$
$\frac{u}{-9}=\frac{v}{-18}=\frac{-1}{18}$
$u=\frac{9}{18}$
$u=\frac{1}{2}$
$v=\frac{18}{18}$
$v=1$
This implies,
$x=\frac{1}{v}=1$
$y=\frac{1}{u}=2$
(vii) Let $\frac{1}{x+y}=u$ and $\frac{1}{x-y}=v$
This implies, the given system of equations can be written as,
$\frac{10}{x+y} +\frac{2}{x-y}=4$
$10u+2v=4$
$10u+2v-4=0$---(i)
$\frac{15}{x+y}-\frac{5}{x-y}=-2$
$15u-5v=-2$
$15u=5v-2$
$u=\frac{5v-2}{15}$---(ii)
Substituting $u=\frac{5v-2}{15}$ in equation (i), we get,
$10(\frac{5v-2}{15})+2v-4=0$
$\frac{2(5v-2)}{3}=4-2v$
$10v-4=3(4-2v)$
$10v-4=12-6v$
$10v+6v=12+4$
$16v=16$
$v=\frac{16}{16}$
$v=1$
Using $v=1$ in equation (i), we get,
$10u+2(1)-4=0$
$10u+2-4=0$
$10u-2=0$
$10u=2$
$u=\frac{2}{10}$
$u=\frac{1}{5}$
Using the values of $u$ and $v$, we get,
$\frac{1}{x+y}=\frac{1}{5}$
$\Rightarrow x+y=5$....(iii)
$\frac{1}{x-y}=1$
$\Rightarrow x-y=1$.....(iv)
Adding equations (iii) and (iv), we get,
$x+y+x-y=5+1$
$\Rightarrow 2x=6$
$\Rightarrow x=\frac{6}{2}$
$\Rightarrow x=3$
Substituting the value of $x$ in (iii), we get,
$3+y=5$
$\Rightarrow y=5-3$
$\Rightarrow y=2$
Therefore, the solution of the given system of equations is $x=3$ and $y=2$.
(viii) \( \frac{1}{3 x+y}+\frac{1}{3 x-y}=\frac{3}{4} \)......(i)
\( \frac{1}{2(3 x+y)}-\frac{1}{2(3 x-y)}=\frac{-1}{8} \).........(ii)
Let $\frac{1}{3x+y}=X$ and $\frac{1}{3x-y}=Y$
Substitute the above values in (i) and (ii),
$X+Y=\frac{3}{4}$
$4X+4Y=3$.......(iii)
$\frac{X}{2}-\frac{Y}{2}=\frac{-1}{8}$
$4X-4Y=-1$........(iv)
Adding (iii) and (iv), we get,
$8X=2$
$X=\frac{1}{4}$
This implies,
$4\frac{1}{4}-4Y=-1$
$1-4Y=-1$
$4Y=2$
$Y=\frac{1}{2}$
$X=\frac{1}{3x+y}=\frac{1}{4}$
$3x+y=4$.......(v)
$Y=\frac{1}{3x-y}=\frac{1}{2}$
$3x-y=2$.......(vi)
Adding (v) and (vi), we get,
$6x=6$
$x=1$
This implies,
$3(1)-y=2$
$y=3-2=1$.