验证性质:$x \times y = y \times x$,取以下值
(i) \( x=-\frac{1}{3}, y=\frac{2}{7} \)
(ii) \( x=\frac{-3}{5}, y=\frac{-11}{13} \)
(iii) \( x=2, y=\frac{7}{-8} \)
(iv) \( x=0, y=\frac{-15}{8} \)
需要做的事情
我们需要验证 $x \times y = y \times x$。
解答
(i) 左边 $=x \times y$
$=-\frac{1}{3} \times \frac{2}{7}$
$=\frac{-1 \times 2}{3 \times 7}$
$=\frac{-2}{21}$
右边 $=y \times x$
$=\frac{2}{7} \times \frac{-1}{3}$
$=\frac{2 \times(-1)}{7 \times 3}$
$=\frac{-2}{21}$
左边 = 右边
因此,
$x \times y = y \times x$。
(ii) 左边 $=x \times y$
$=\frac{-3}{5} \times \frac{-11}{13}$
$=\frac{-3 \times -11}{5 \times 13}$
$=\frac{33}{65}$
右边 $=y \times x$
$=\frac{-11}{13} \times \frac{-3}{5}$
$=\frac{-11 \times(-3)}{13 \times 5}$
$=\frac{33}{65}$
左边 = 右边
因此,
$x \times y = y \times x$。
(iii) 左边 $=x \times y$
$=2 \times \frac{7}{-8}$
$=\frac{2 \times -7}{8}$
$=\frac{-7}{4}$
右边 $=y \times x$
$=\frac{7}{-8} \times 2$
$=\frac{-7 \times2}{8}$
$=\frac{-7}{4}$
左边 = 右边
因此,
$x \times y = y \times x$。
(iv) 左边 $=x \times y$
$=0 \times \frac{-15}{8}$
$=\frac{0 \times -15}{8}$
$=0$
右边 $=y \times x$
$=\frac{-15}{8} \times 0$
$=\frac{-15 \times0}{8}$
$=0$
左边 = 右边
因此,
$x \times y = y \times x$。
- 相关文章
- 验证性质:$x \times(y + z) = x \times y + x \times z$,取以下值:(i) \( x=\frac{-3}{7}, y=\frac{12}{13}, z=\frac{-5}{6} \)(ii) \( x=\frac{-12}{5}, y=\frac{-15}{4}, z=\frac{8}{3} \)(iii) \( x=\frac{-8}{3}, y=\frac{5}{6}, z=\frac{-13}{12} \)(iv) \( x=\frac{-3}{4}, y=\frac{-5}{2}, z=\frac{7}{6} \)
- 验证性质:$x \times (y \times z) = (x \times y) \times z$,取以下值:(i) \( x=\frac{-7}{3}, y=\frac{12}{5}, z=\frac{4}{9} \)(ii) \( x=0, y=\frac{-3}{5}, z=\frac{-9}{4} \)(iii) \( x=\frac{1}{2}, y=\frac{5}{-4}, z=\frac{-7}{5} \)(iv) \( x=\frac{5}{7}, y=\frac{-12}{13}, z=\frac{-7}{18} \)
- \查找 $(x +y) \div (x - y)$。如果,(i) \( x=\frac{2}{3}, y=\frac{3}{2} \)(ii) \( x=\frac{2}{5}, y=\frac{1}{2} \)(iii) \( x=\frac{5}{4}, y=\frac{-1}{3} \)(iv) \( x=\frac{2}{7}, y=\frac{4}{3} \)(v) \( x=\frac{1}{4}, y=\frac{3}{2} \)
- 通过将以下方程组简化为线性方程组来求解:(i) \( \frac{1}{2 x}+\frac{1}{3 y}=2 \)\( \frac{1}{3 x}+\frac{1}{2 y}=\frac{13}{6} \)(ii) \( \frac{2}{\sqrt{x}}+\frac{3}{\sqrt{y}}=2 \)\( \frac{4}{\sqrt{x}}-\frac{9}{\sqrt{y}}=-1 \)(iii) \( \frac{4}{x}+3 y=14 \)\( \frac{3}{x}-4 y=23 \)(iv) \( \frac{5}{x-1}+\frac{1}{y-2}=2 \)\( \frac{6}{x-1}-\frac{3}{y-2}=1 \)(v) \( \frac{7 x-2 y}{x y}=5 \)\( \frac{8 x+7 y}{x y}=15 \),b>(vi) \( 6 x+3 y=6 x y \)\( 2 x+4 y=5 x y \)4(vii) \( \frac{10}{x+y}+\frac{2}{x-y}=4 \)\( \frac{15}{x+y}-\frac{5}{x-y}=-2 \)(viii) \( \frac{1}{3 x+y}+\frac{1}{3 x-y}=\frac{3}{4} \)\( \frac{1}{2(3 x+y)}-\frac{1}{2(3 x-y)}=\frac{-1}{8} \).
- 验证有理数加法的结合律,即 $(x + y) + z = x + (y + z)$,当:(i) \( x=\frac{1}{2}, y=\frac{2}{3}, z=-\frac{1}{5} \)(ii) \( x=\frac{-2}{5}, y=\frac{4}{3}, z=\frac{-7}{10} \)(iii) \( x=\frac{-7}{11}, y=\frac{2}{-5}, z=\frac{-3}{22} \)(iv) \( x=-2, y=\frac{3}{5}, z=\frac{-4}{3} \)
- 将以下代数表达式相加(i) \( 3 a^{2} b,-4 a^{2} b, 9 a^{2} b \)(ii) \( \frac{2}{3} a, \frac{3}{5} a,-\frac{6}{5} a \)(iii) \( 4 x y^{2}-7 x^{2} y, 12 x^{2} y-6 x y^{2},-3 x^{2} y+5 x y^{2} \)(iv) \( \frac{3}{2} a-\frac{5}{4} b+\frac{2}{5} c, \frac{2}{3} a-\frac{7}{2} b+\frac{7}{2} c, \frac{5}{3} a+ \) \( \frac{5}{2} b-\frac{5}{4} c \)(v) \( \frac{11}{2} x y+\frac{12}{5} y+\frac{13}{7} x,-\frac{11}{2} y-\frac{12}{5} x-\frac{13}{7} x y \)(vi) \( \frac{7}{2} x^{3}-\frac{1}{2} x^{2}+\frac{5}{3}, \frac{3}{2} x^{3}+\frac{7}{4} x^{2}-x+\frac{1}{3} \) \( \frac{3}{2} x^{2}-\frac{5}{2} x-2 \)
- 化简: \( \frac{11}{2} x^{2} y-\frac{9}{4} x y^{2}+\frac{1}{4} x y-\frac{1}{14} y^{2} x+\frac{1}{15} y x^{2}+\frac{1}{2} x y \).
- (i) \( x^{2}-3 x+5-\frac{1}{2}\left(3 x^{2}-5 x+7\right) \)(ii) \( [5-3 x+2 y-(2 x-y)]-(3 x-7 y+9) \)(iii) \( \frac{11}{2} x^{2} y-\frac{9}{4} x y^{2}+\frac{1}{4} x y-\frac{1}{14} y^{2} x+\frac{1}{15} y x^{2}+ \) \( \frac{1}{2} x y \)(iv) \( \left(\frac{1}{3} y^{2}-\frac{4}{7} y+11\right)-\left(\frac{1}{7} y-3+2 y^{2}\right)- \) \( \left(\frac{2}{7} y-\frac{2}{3} y^{2}+2\right) \)(v) \( -\frac{1}{2} a^{2} b^{2} c+\frac{1}{3} a b^{2} c-\frac{1}{4} a b c^{2}-\frac{1}{5} c b^{2} a^{2}+ \) \( \frac{1}{6} c b^{2} a+\frac{1}{7} c^{2} a b+\frac{1}{8} c a^{2} b \).
- 求解以下方程组:$\frac{6}{x+y} =\frac{7}{x-y}+3$$\frac{1}{2(x+y)}=\frac{1}{3(x-y)}$
- 求解以下方程组:\( \frac{2 x y}{x+y}=\frac{3}{2} \)\( \frac{x y}{2 x-y}=\frac{-3}{10}, x+y ≠ 0,2 x-y ≠ 0 \)
- 求解以下方程组:$\frac{5}{x+y} -\frac{2}{x-y}=-1$$\frac{15}{x+y}+\frac{7}{x-y}=10$
- 验证: $x\times(y\times z)=(x\times y)\times z$,其中 $x=\frac{1}{2},\ y=\frac{1}{3}$ 和 $z=\frac{1}{4}$。
- 减法:(i) 从 $12xy$ 中减去 $-5xy$(ii) 从 $-7a^2$ 中减去 $2a^2$(iii) 从 \( 3 a-5 b \) 中减去 \( 2 a-b \)(iv) 从 \( 4 x^{3}+x^{2}+x+6 \) 中减去 \( 2 x^{3}-4 x^{2}+3 x+5 \)(v) 从 \( \frac{1}{3} y^{3}+\frac{5}{7} y^{2}+y-2 \) 中减去 \( \frac{2}{3} y^{3}-\frac{2}{7} y^{2}-5 \)(vi) 从 \( \frac{2}{3} x+\frac{3}{2} y-\frac{4}{3} z \) 中减去 \( \frac{3}{2} x-\frac{5}{4} y-\frac{7}{2} z \)(vii) 从 \( \frac{2}{3} x^{2} y+\frac{3}{2} x y^{2}- \) \( \frac{1}{3} x y \) 中减去 \( x^{2} y-\frac{4}{5} x y^{2}+\frac{4}{3} x y \)(viii) 从 \( \frac{3}{5} b c-\frac{4}{5} a c \) 中减去 \( \frac{a b}{7}-\frac{35}{3} b c+\frac{6}{5} a c \)
- 验证性质 \( x \times(y+z)=(x \times y)+(x \times z) \) ,对于给定的 \( x,\ y \) 和 \( z \) 的值。\( x=\frac{-5}{2}, y=\frac{1}{2} \) 和 \( z=-\frac{10}{7} \)>
- 求解:$\frac{3 x}{2}-\frac{5 y}{3}=-2$$\frac{x}{3}+\frac{y}{2}=\frac{13}{6}$
开启你的 职业生涯
通过完成课程获得认证
立即开始