验证以下性质:$x \times(y + z) = x \times y + x \times z$
(i) \( x=\frac{-3}{7}, y=\frac{12}{13}, z=\frac{-5}{6} \)
(ii) \( x=\frac{-12}{5}, y=\frac{-15}{4}, z=\frac{8}{3} \)
(iii) \( x=\frac{-8}{3}, y=\frac{5}{6}, z=\frac{-13}{12} \)
(iv) \( x=\frac{-3}{4}, y=\frac{-5}{2}, z=\frac{7}{6} \)
需要做的事情
我们需要验证 $x \times(y + z) = x \times y + x \times z$。
解答
(i) 左侧 $=x \times(y + z)$
$=\frac{-3}{7} \times(\frac{12}{13} + \frac{-5}{6})$
$=\frac{-3}{7} \times(\frac{12 \times6+13\times(-5)}{78})$
$=\frac{-3}{7} \times(\frac{72-65}{78})$
$=\frac{-3}{7} \times \frac{7}{78}$
$=\frac{-3 \times 7}{7 \times 78}$
$=\frac{-1}{26}$
右侧 $=x \times y + x \times z$
$=(\frac{-3}{7} \times \frac{12}{13}) + (\frac{-3}{7}\times\frac{-5}{6}$
$=\frac{-3 \times 12}{7 \times13} + \frac{-3\times(-5)}{7\times6}$
$=\frac{-36}{91} + \frac{5}{14}$
$=\frac{-36\times2+5\times13}{182}$
$=\frac{-72+65}{182}$
$=\frac{-7}{182}$
$=\frac{-1}{26}$
左侧 = 右侧
因此,
$x \times(y + z) = x \times y + x \times z$。
(ii) 左侧 $=x \times(y + z)$
$=\frac{-12}{5} \times(\frac{-15}{4} + \frac{8}{3})$
$=\frac{-12}{5} \times(\frac{-15 \times3+8\times4}{12})$
$=\frac{-12}{5} \times(\frac{-45+32}{12})$
$=\frac{-12}{5} \times \frac{-13}{12}$
$=\frac{-12 \times -13}{5 \times 12}$
$=\frac{13}{5}$
右侧 $=x \times y + x \times z$
$=(\frac{-12}{5} \times \frac{-15}{4}) + (\frac{-12}{5}\times\frac{8}{3}$
$=\frac{-12 \times -15}{5 \times4} + \frac{-12\times8}{5\times3}$
$=\frac{9}{1} + \frac{-32}{5}$
$=\frac{9\times5-32\times1}{5}$
$=\frac{45-32}{5}$
$=\frac{13}{5}$
左侧 = 右侧
因此,
$x \times(y + z) = x \times y + x \times z$。
(iii) 左侧 $=x \times(y + z)$
$=\frac{-8}{3} \times(\frac{5}{6} + \frac{-13}{12})$
$=\frac{-8}{3} \times(\frac{5 \times2+(-13)\times1}{12})$
$=\frac{-8}{3} \times(\frac{10-13}{12})$
$=\frac{-8}{3} \times \frac{-3}{12}$
$=\frac{-8 \times -3}{3 \times 12}$
$=\frac{2}{3}$
右侧 $=x \times y + x \times z$
$=(\frac{-8}{3} \times \frac{5}{6}) + (\frac{-8}{3}\times\frac{-13}{12}$
$=\frac{-8 \times 5}{3\times6} + \frac{-8\times(-13)}{3\times12}$
$=\frac{-20}{9} + \frac{26}{9}$
$=\frac{-20+26}{9}$
$=\frac{6}{9}$
$=\frac{2}{3}$
左侧 = 右侧
因此,
$x \times(y + z) = x \times y + x \times z$。
(iv) 左侧 $=x \times(y + z)$
$=\frac{-3}{4} \times(\frac{-5}{2} + \frac{7}{6})$
$=\frac{-3}{4} \times(\frac{-5 \times3+7\times1}{6})$
$=\frac{-3}{4} \times(\frac{-15+7}{6})$
$=\frac{-3}{4} \times \frac{-8}{6}$
$=\frac{-3 \times -8}{4 \times 6}$
$=\frac{1}{1}$
$=1$
右侧 $=x \times y + x \times z$
$=(\frac{-3}{4} \times \frac{-5}{2}) + (\frac{-3}{4}\times\frac{7}{6}$
$=\frac{-3 \times -5}{4\times2} + \frac{-3\times7}{4\times6}$
$=\frac{15}{8} + \frac{-7}{8}$
$=\frac{15-7}{8}$
$=\frac{8}{8}$
$=1$
左侧 = 右侧
因此,
$x \times(y + z) = x \times y + x \times z$。
- 相关文章
- 验证以下性质:$x \times (y \times z) = (x \times y) \times z$,取以下值:(i) \( x=\frac{-7}{3}, y=\frac{12}{5}, z=\frac{4}{9} \)(ii) \( x=0, y=\frac{-3}{5}, z=\frac{-9}{4} \)(iii) \( x=\frac{1}{2}, y=\frac{5}{-4}, z=\frac{-7}{5} \)(iv) \( x=\frac{5}{7}, y=\frac{-12}{13}, z=\frac{-7}{18} \)
- 验证有理数加法的结合律,即 $(x + y) + z = x + (y + z)$,当:(i) \( x=\frac{1}{2}, y=\frac{2}{3}, z=-\frac{1}{5} \)(ii) \( x=\frac{-2}{5}, y=\frac{4}{3}, z=\frac{-7}{10} \)(iii) \( x=\frac{-7}{11}, y=\frac{2}{-5}, z=\frac{-3}{22} \)(iv) \( x=-2, y=\frac{3}{5}, z=\frac{-4}{3} \)
- 验证以下性质:$x \times y = y \times x$,取以下值:(i) \( x=-\frac{1}{3}, y=\frac{2}{7} \)(ii) \( x=\frac{-3}{5}, y=\frac{-11}{13} \)(iii) \( x=2, y=\frac{7}{-8} \)(iv) \( x=0, y=\frac{-15}{8} \)
- 验证:$x\times(y\times z)=(x\times y)\times z$,其中 $x=\frac{1}{2},\ y=\frac{1}{3}$ 和 $z=\frac{1}{4}$。
- 验证性质 \( x \times(y+z)=(x \times y)+(x \times z) \) ,对于给定的 \( x,\ y \) 和 \( z \) 的值。\( x=\frac{-5}{2}, y=\frac{1}{2} \) 和 \( z=-\frac{10}{7} \)>
- 分解以下每个表达式:\( \left(\frac{x}{2}+y+\frac{z}{3}\right)^{3}+\left(\frac{x}{3}-\frac{2 y}{3}+z\right)^{3} +\left(-\frac{5 x}{6}-\frac{y}{3}-\frac{4 z}{3}\right)^{3} \)
- 添加以下代数表达式(i) \( 3 a^{2} b,-4 a^{2} b, 9 a^{2} b \)(ii) \( \frac{2}{3} a, \frac{3}{5} a,-\frac{6}{5} a \)(iii) \( 4 x y^{2}-7 x^{2} y, 12 x^{2} y-6 x y^{2},-3 x^{2} y+5 x y^{2} \)(iv) \( \frac{3}{2} a-\frac{5}{4} b+\frac{2}{5} c, \frac{2}{3} a-\frac{7}{2} b+\frac{7}{2} c, \frac{5}{3} a+ \) \( \frac{5}{2} b-\frac{5}{4} c \)(v) \( \frac{11}{2} x y+\frac{12}{5} y+\frac{13}{7} x,-\frac{11}{2} y-\frac{12}{5} x-\frac{13}{7} x y \)(vi) \( \frac{7}{2} x^{3}-\frac{1}{2} x^{2}+\frac{5}{3}, \frac{3}{2} x^{3}+\frac{7}{4} x^{2}-x+\frac{1}{3} \) \( \frac{3}{2} x^{2}-\frac{5}{2} x-2 \)
- 如果 \( 2^{x}=3^{y}=12^{z} \),证明 \( \frac{1}{z}=\frac{1}{y}+\frac{2}{x} \)。
- 减法:(i) 从 $12xy$ 中减去 $-5xy$(ii) 从 $-7a^2$ 中减去 $2a^2$(iii) 从 \( 3 a-5 b \) 中减去 \( 2 a-b \)(iv) 从 \( 4 x^{3}+x^{2}+x+6 \) 中减去 \( 2 x^{3}-4 x^{2}+3 x+5 \)(v) 从 \( \frac{1}{3} y^{3}+\frac{5}{7} y^{2}+y-2 \) 中减去 \( \frac{2}{3} y^{3}-\frac{2}{7} y^{2}-5 \)(vi) 从 \( \frac{2}{3} x+\frac{3}{2} y-\frac{4}{3} z \) 中减去 \( \frac{3}{2} x-\frac{5}{4} y-\frac{7}{2} z \)(vii) 从 \( \frac{2}{3} x^{2} y+\frac{3}{2} x y^{2}- \) \( \frac{1}{3} x y \) 中减去 \( x^{2} y-\frac{4}{5} x y^{2}+\frac{4}{3} x y \)(viii) 从 \( \frac{3}{5} b c-\frac{4}{5} a c \) 中减去 \( \frac{a b}{7}-\frac{35}{3} b c+\frac{6}{5} a c \)
- 通过将以下方程组简化为线性方程组来求解:(i) \( \frac{1}{2 x}+\frac{1}{3 y}=2 \)\( \frac{1}{3 x}+\frac{1}{2 y}=\frac{13}{6} \)(ii) \( \frac{2}{\sqrt{x}}+\frac{3}{\sqrt{y}}=2 \)\( \frac{4}{\sqrt{x}}-\frac{9}{\sqrt{y}}=-1 \)(iii) \( \frac{4}{x}+3 y=14 \)\( \frac{3}{x}-4 y=23 \)(iv) \( \frac{5}{x-1}+\frac{1}{y-2}=2 \)\( \frac{6}{x-1}-\frac{3}{y-2}=1 \)(v) \( \frac{7 x-2 y}{x y}=5 \)\( \frac{8 x+7 y}{x y}=15 \),b>(vi) \( 6 x+3 y=6 x y \)\( 2 x+4 y=5 x y \)4(vii) \( \frac{10}{x+y}+\frac{2}{x-y}=4 \)\( \frac{15}{x+y}-\frac{5}{x-y}=-2 \)(viii) \( \frac{1}{3 x+y}+\frac{1}{3 x-y}=\frac{3}{4} \)\( \frac{1}{2(3 x+y)}-\frac{1}{2(3 x-y)}=\frac{-1}{8} \).
- 求以下积:\( \frac{-8}{27} x y z\left(\frac{3}{2} x y z^{2}-\frac{9}{4} x y^{2} z^{3}\right) \)
- 求解:$\frac{3 x}{2}-\frac{5 y}{3}=-2$$\frac{x}{3}+\frac{y}{2}=\frac{13}{6}$
- 求以下积。\( \left(\frac{-7}{5} x y^{2} z\right) \times\left(\frac{13}{3} x^{2} y z^{2}\right) \)
- \求 $(x +y) \div (x - y)$。如果,(i) \( x=\frac{2}{3}, y=\frac{3}{2} \)(ii) \( x=\frac{2}{5}, y=\frac{1}{2} \)(iii) \( x=\frac{5}{4}, y=\frac{-1}{3} \)(iv) \( x=\frac{2}{7}, y=\frac{4}{3} \)(v) \( x=\frac{1}{4}, y=\frac{3}{2} \)
- 如果 \( 2^{x}=3^{y}=6^{-z} \),证明 \( \frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0 \)。
开启你的 职业生涯
通过完成课程获得认证
立即开始