化简:x−3−y−3x−3y−1+(xy)−2+y−1x−3。
待解决:化简:x−3−y−3x−3y−1+(xy)−2+y−1x−3
解答:
x−3−y−3x−3y−1+(xy)−2+y−1x−3
分子=x−3−y−3
=1x3−1y3
=y3−x3x3y3
分母=x−3y−1+(xy)−2+y−1x−3
=1x3y+1x2y2+1yx3
=y2+xy+y2x3y3
=2y2+xyx3y3
=2y(x+y)x3y3
因此,x−3−y−3x−3y−1+(xy)−2+y−1x−3=y3−x3x3y32y(x+y)x3y3
=y3−x32y(x+y)
- 相关文章
- 1. 将表达式3xy−2+3y−2x因式分解A) (x+1),(3y−2)B) (x+1),(3y+2)C) (x−1),(3y−2)D) (x−1),(3y+2)2. 将表达式xy−x−y+1因式分解A) (x−1),(y+1)B) (x+1),(y−1)C) (x−1),(y−1)D) (x+1),(y+1)
- 通过将以下方程组简化为线性方程组对来求解:(i) 12x+13y=213x+12y=136(ii) 2√x+3√y=24√x−9√y=−1(iii) 4x+3y=143x−4y=23(iv) 5x−1+1y−2=26x−1−3y−2=1(v) 7x−2yxy=58x+7yxy=15,b>(vi) 6x+3y=6xy2x+4y=5xy4(vii) 10x+y+2x−y=415x+y−5x−y=−2(viii) 13x+y+13x−y=3412(3x+y)−12(3x−y)=−18.
- 验证x3+y3+z3−3xyz=12(x+y+z)[(x−y)2+(y−z)2+(z−x)2]
- \查找 (x+y)÷(x−y)。如果,(i) x=23,y=32(ii) x=25,y=12(iii) x=54,y=−13(iv) x=27,y=43(v) x=14,y=32
- 验证:(i) x3+y3=(x+y)(x2−xy+y2)(ii) x3−y3=(x−y)(x2+xy+y2)
- 解下列方程组:6x+y=7x−y+312(x+y)=13(x−y)
- 因式分解:x3−2x2y+3xy2−6y3
- 化简下列每个式子:(x2+y3)3−(x2−y3)3
- 因式分解:x(x3−y3)+3xy(x−y)
- 计算:(3x2y−5xy2)乘以(15x2+13y2)
- 解下列方程组:2xyx+y=32xy2x−y=−310,x+y≠0,2x−y≠0
- 解:x2+2y3=−1 和 x−y3=3。
- 化简:2x+3y−4z−(3y+5x−2z)
- 因式分解:(i) x3−2x2−x+2(ii) x3−3x2−9x−5(iii) x3+13x2+32x+20(iv) 2y3+y2−2y−1
- 化简:112x2y−94xy2+14xy−114y2x+115yx2+12xy.