化简
$2x + 3y - 4z - (3y + 5x - 2z)$
已知:$2x + 3y - 4z - (3y + 5x - 2z)$
要求:化简表达式
解答:
$2x + 3y - 4z - (3y + 5x - 2z)$
$= 2x + 3y - 4z - 3y - 5x + 2z$
$= -3x - 2z$
所以,$2x + 3y - 4z - (3y + 5x - 2z) = -3x - 2z$
- 相关文章
- 验证\( x^{3}+y^{3}+z^{3}-3xyz=\frac{1}{2}(x+y+z)\left[(x-y)^{2}+(y-z)^{2}+(z-x)^{2}\right] \)
- 从\(5xy - 2yz - 2zx + 10xyz\)中减去\(3xy + 5yz - 7zx\).
- 化简下列每个表达式:\( (x+y-2z)^{2}-x^{2}-y^{2}-3z^{2}+4xy \)
- 验证有理数加法的结合律,即\( (x + y) + z = x + (y + z)\),当:(i) \( x=\frac{1}{2}, y=\frac{2}{3}, z=-\frac{1}{5} \)(ii) \( x=\frac{-2}{5}, y=\frac{4}{3}, z=\frac{-7}{10} \)(iii) \( x=\frac{-7}{11}, y=\frac{2}{-5}, z=\frac{-3}{22} \)(iv) \( x=-2, y=\frac{3}{5}, z=\frac{-4}{3} \)
- 化简下列每个表达式:\( (x+y+z)^{2}+\left(x+\frac{y}{2}+\frac{z}{3}\right)^{2}-\left(\frac{x}{2}+\frac{y}{3}+\frac{z}{4}\right)^{2} \)
- 如果\( 3^{x}=5^{y}=(75)^{z} \),证明\( z=\frac{xy}{2x+y} \).
- 化简:$(x^2 + y^2 - z^2)^2 - (x^2 - y^2 + z^2)^2$
- 因式分解:(i) \( 4x^{2}+9y^{2}+16z^{2}+12xy-24yz-16xz \)(ii) \( 2x^{2}+y^{2}+8z^{2}-2\sqrt{2}xy+4\sqrt{2}yz-8xz \)
- 计算下列乘积:\( \frac{-8}{27}xyz\left(\frac{3}{2}xyz^{2}-\frac{9}{4}xy^{2}z^{3}\right) \)
- 计算下列乘积:\( \frac{-4}{27}xyz\left[\frac{9}{2}x^{2}yz-\frac{3}{4}xyz^{2}\right] \)
- 计算$(-3xyz)(\frac{4}{9}x^{2}z)(-\frac{27}{2}xy^{2}z)$的乘积,并验证当$x=2, y=3$且$z=-1$时的结果。
- 如果\( x+y+z=0 \),证明\( x^{3}+y^{3}+z^{3}=3xyz \).
- 如果$2^x \times 3^y \times 5^z = 2160$,求$x, y$和$z$。然后,计算$3^x \times 2^{-y} \times 5^{-z}$的值。
- 因式分解:\( 4x^{2}+9y^{2}+16z^{2}+12xy-24yz-16xz \)
- 计算下列乘积:(i) $(x + 4)(x + 7)$(ii) $(x - 11)(x + 4)$(iii) $(x + 7)(x - 5)$(iv) $(x - 3)(x - 2)$(v) $(y^2 - 4)(y^2 - 3)$(vi) $(x + \frac{4}{3})(x + \frac{3}{4})$(vii) $(3x + 5)(3x + 11)$(viii) $(2x^2 - 3)(2x^2 + 5)$(ix) $(z^2 + 2)(z^2 - 3)$(x) $(3x - 4y)(2x - 4y)$(xi) $(3x^2 - 4xy)(3x^2 - 3xy)$(xii) $(x + \frac{1}{5})(x + 5)$(xiii) $(z + \frac{3}{4})(z + \frac{4}{3})$(xiv) $(x^2 + 4)(x^2 + 9)$(xv) $(y^2 + 12)(y^2 + 6)$(xvi) $(y^2 + \frac{5}{7})(y^2 - \frac{14}{5})$(xvii) $(p^2 + 16)(p^2 - \frac{1}{4})$