验证:(i) \( x^{3}+y^{3}=(x+y)\left(x^{2}-x y+y^{2}\right) \)
(ii) \( x^{3}-y^{3}=(x-y)\left(x^{2}+x y+y^{2}\right) \)
待办事项
我们需要验证
(i) \( x^{3}+y^{3}=(x+y)\left(x^{2}-x y+y^{2}\right) \)
(ii) \( x^{3}-y^{3}=(x-y)\left(x^{2}+x y+y^{2}\right) \)
解答
(i) 我们知道:
$(x+y)^3 = x^3+y^3+3xy(x+y)$
这意味着:
$x^3+y^3 = (x+y)^3-3xy(x+y)$
提取公因式$(x+y)$,我们得到:
$x^3+y^3 = (x+y)[(x+y)^2-3xy]$
$x^3+y^3 = (x+y)[(x^2+y^2+2xy)-3xy]$ [因为 $(x+y)^2=x^2+2xy+y^2$]
$x^3+y^3 = (x+y)(x^2+y^2+2xy-3xy)$
$x^3+y^3 = (x+y)(x^2-xy+y^2)$
因此验证完毕。
(ii) 我们知道:
$(x-y)^3 = x^3-y^3-3xy(x-y)$
这意味着:
$x^3-y^3 = (x-y)^3+3xy(x-y)$
提取公因式$(x-y)$,我们得到:
$x^3-y^3 = (x-y)[(x-y)^2+3xy]$
$x^3-y^3 = (x-y)[(x^2+y^2-2xy)+3xy]$ [因为 $(x-y)^2=x^2-2xy+y^2$]
$x^3-y^3 = (x-y)(x^2+y^2-2xy+3xy)$
$x^3-y^3 = (x-y)(x^2+xy+y^2)$
因此验证完毕。
- 相关文章
- 验证 \( x^{3}+y^{3}+z^{3}-3 x y z=\frac{1}{2}(x+y+z)\left[(x-y)^{2}+(y-z)^{2}+(z-x)^{2}\right] \)
- 因式分解:\( x\left(x^{3}-y^{3}\right)+3 x y(x-y) \)
- 因式分解:\( x^{3}-2 x^{2} y+3 x y^{2}-6 y^{3} \)
- 计算:\( \left(3 x^{2} y-5 x y^{2}\right) \) 乘以 \( \left(\frac{1}{5} x^{2}+\frac{1}{3} y^{2}\right) \)
- 化简:$\frac{x^{-3}-y^{-3}}{x^{-3} y^{-1}+(x y)^{-2}+y^{-1} x^{-3}}$。
- \( \left(\frac{x}{2}+\frac{3 y}{4}\right)\left(\frac{x}{2}+\frac{3 y}{4}\right) \)
- 计算下列二项式的乘积:(i) \( (2 x+y)(2 x+y) \)(ii) \( (a+2 b)(a-2 b) \)(iii) \( \left(a^{2}+b c\right)\left(a^{2}-b c\right) \)(iv) \( \left(\frac{4 x}{5}-\frac{3 y}{4}\right)\left(\frac{4 x}{5}+\frac{3 y}{4}\right) \)(v) \( \left(2 x+\frac{3}{y}\right)\left(2 x-\frac{3}{y}\right) \)(vi) \( \left(2 a^{3}+b^{3}\right)\left(2 a^{3}-b^{3}\right) \)(vii) \( \left(x^{4}+\frac{2}{x^{2}}\right)\left(x^{4}-\frac{2}{x^{2}}\right) \)(viii) \( \left(x^{3}+\frac{1}{x^{3}}\right)\left(x^{3}-\frac{1}{x^{3}}\right) \).
- 因式分解:(i) \( x^{3}-2 x^{2}-x+2 \)(ii) \( x^{3}-3 x^{2}-9 x-5 \)(iii) \( x^{3}+13 x^{2}+32 x+20 \)(iv) \( 2 y^{3}+y^{2}-2 y-1 \)
- 1. 因式分解表达式 \( 3 x y - 2 + 3 y - 2 x \) A) \( (x+1),(3 y-2) \) B) \( (x+1),(3 y+2) \) C) \( (x-1),(3 y-2) \) D) \( (x-1),(3 y+2) \) 2. 因式分解表达式 \( xy-x-y+1 \) A) \( (x-1),(y+1) \) B) \( (x+1),(y-1) \) C) \( (x-1),(y-1) \) D) \( (x+1),(y+1) \)
- 解下列方程组:\( \frac{2 x y}{x+y}=\frac{3}{2} \) \( \frac{x y}{2 x-y}=\frac{-3}{10}, x+y ≠ 0,2 x-y ≠ 0 \)
- 当 $x=2, y=-1$ 时,计算下列各式的值:\( (2 x y) \times\left(\frac{x^{2} y}{4}\right) \times\left(x^{2}\right) \times\left(y^{2}\right) \)
- 计算下列乘积:\( \left(\frac{x}{2}+2 y\right)\left(\frac{x^{2}}{4}-x y+4 y^{2}\right) \)
- 当 $x=2, y=-1$ 时,计算下列各式的值:\( \left(\frac{3}{5} x^{2} y\right) \times\left(\frac{-15}{4} x y^{2}\right) \times\left(\frac{7}{9} x^{2} y^{2}\right) \)
- 证明:\( \left(\frac{a^{x+1}}{a^{y+1}}\right)^{x+y}\left(\frac{a^{y+2}}{a^{z+2}}\right)^{y+z}\left(\frac{a^{z+3}}{a^{x+3}}\right)^{z+x}=1 \)
- 计算下列除法。$ x^{2} y-3 x y \div y $