证明以下恒等式:\( \frac{\sin A}{\sec A+\tan A-1}+\frac{\cos A}{\operatorname{cosec} A+\cot A-1}=1 \)


待办事项

我们需要证明\( \frac{\sin A}{\sec A+\tan A-1}+\frac{\cos A}{\operatorname{cosec} A+\cot A-1}=1 \).

解答

我们知道:

$\sin^2 A+\cos^2 A=1$

$\operatorname{cosec}^2 A-\cot^2 A=1$

$\sec^2 A-\tan^2 A=1$

$\cot A=\frac{\cos A}{\sin A}$

$\tan A=\frac{\sin A}{\cos A}$

$\operatorname{cosec} A=\frac{1}{\sin A}$

$\sec A=\frac{1}{\cos A}$

因此:

$\frac{\sin A}{\sec A+\tan A-1}+\frac{\cos A}{\operatorname{cosec} A+\cot A-1}=\frac{\sin A}{\frac{1}{\cos A}+\frac{\sin A}{\cos A}-1}+\frac{\cos A}{\frac{1}{\sin A}+\frac{\cos A}{\sin A}-1}$

$=\frac{\sin A}{\frac{1+\sin A-\cos A}{\cos A}}+\frac{\cos A}{\frac{1+\cos A-\sin A}{\sin A}}$

$=\frac{\sin A \cos A}{1+\sin A-\cos A}+\frac{\sin A \cos A}{1-\sin A+\cos A}$

$=\sin A \cos A \left(\frac{1}{1+\sin A-\cos A}+\frac{1}{1-\sin A+\cos A}\right)$

$=\sin A \cos A \left(\frac{1-\sin A+\cos A+1+\sin A-\cos A}{(1+\sin A-\cos A)(1-\sin A+\cos A)}\right)$

$=\sin A \cos A \left(\frac{2}{(1+\sin A-\cos A)(1-\sin A+\cos A)}\right)$

$= \frac{2\sin A \cos A}{(1)^{2}-(\sin A-\cos A)^{2}}$

$=\frac{2 \sin A \cos A}{1-\left(\sin ^{2} A+\cos ^{2} A-2 \sin A \cos A\right)}$

$=\frac{2 \sin A \cos A}{1-(1-2 \sin A \cos A)}$

$=\frac{2 \sin A \cos A}{1-1+2 \sin A \cos A}$

$=\frac{2 \sin A \cos A}{2 \sin A \cos A}$

$=1$

证毕。       

更新于: 2022年10月10日

37 次浏览

开启您的职业生涯

完成课程获得认证

开始学习
广告