化简
(x2−3x+2)(5x−2)−(3x2+4x−5)(2x−1)
已知
(x2−3x+2)(5x−2)−(3x2+4x−5)(2x−1)
要求
我们需要化简给定的表达式。
解答
(x2−3x+2)(5x−2)−(3x2+4x−5)(2x−1)=[5x(x2−3x+2)−2(x2−3x+2)]−[2x(3x2+4x−5)−1(3x2+4x−5)]
=[5x3−15x2+10x−2x2+6x−4]−[6x3+8x2−10x−3x2−4x+5]
=[5x3−15x2−2x2+10x+6x−4]−[6x3+8x2−3x2−10x−4x+5]
=(5x3−17x2+16x−4)−(6x3+5x2−14x+5)
=5x3−17x2+16x−4−6x3−5x2+14x−5
=5x3−6x3−17x2−5x2+16x+14x−4−5
=−x3−22x2+30x−9
广告