化简:$( \frac{4}{5})^{2}\times5^{4}\times( \frac{2}{5})^{-2}\div( \frac{5}{2})^{-3}$。
已知:$( \frac{4}{5})^{2}\times5^{4}\times( \frac{2}{5})^{-2}\div( \frac{5}{2})^{-3}$。
要求:化简:$( \frac{4}{5})^{2}\times5^{4}\times( \frac{2}{5})^{-2}\div( \frac{5}{2})^{-3}$。
解答
$( \frac{4}{5})^{2}\times5^{4}\times( \frac{2}{5})^{-2}\div( \frac{5}{2})^{-3}$
$=( \frac{4}{5})^{2}\times5^{4}\times( \frac{5}{2})^{2}\times( \frac{5}{2})^{3}$ [$\because ( \frac{a}{b})^{-n}=(\frac{b}{a})^n$]
$=\frac{4^2\times5^4\times5^2\times5^3}{5^2\times2^2\times2^3}$
$=\frac{(2^2)^2\times5^{( 4+2+3)}}{5^2\times2^{( 2+3)}}$ [$\because a^m\times a^n=a^{(m+n)}$]
$=\frac{2^4\times5^9}{5^2\times2^5}$
$=2^{4-5}\times5^{9-2}$
$=2^{-1}\times5^7$
$=\frac{5^7}{2}$
因此,$( \frac{4}{5})^{2}\times5^{4}\times( \frac{2}{5})^{-2}\div( \frac{5}{2})^{-3}=\frac{5^7}{2}$。
广告