化简:$(2x + p - c)^2 - (2x - p + c)^2$


已知

$(2x + p - c)^2 - (2x - p + c)^2$

任务

我们必须化简 $(2x + p - c)^2 - (2x - p + c)^2$。

解答

我们知道,

$(a+b+c)^2=a^2+b^2+c^2+2ab+2bc+2ca$

因此,

$(2 x+p-c)^{2}-(2 x-p+c)^{2}=[(2 x)^{2}+(p)^{2}+(-c)^{2}+2 \times 2 x \times p-2 p c-2 \times c \times 2 x]-[(2 x)^{2}+(-p)^{2}+(c)^{2}-2 \times 2 x \times p-2 p c+2 c \times 2 x]$

$=(4 x^{2}+p^{2}+c^{2}+4 x p-2 p c-4 c x)-(4 x^{2}+p^{2}+c^{2}-4 x p-2 p c+4 c x$

$=4 x^{2}+p^{2}+c^{2}+4 x p-2 p c-4 c x-4 x^{2}-p^{2}-c^{2}+4 x p+2 p c-4 c x$

$=8 x p-8 c x$

$=8 x(p-c)$

因此,$(2 x+p-c)^{2}-(2 x-p+c)^{2}=8 x(p-c)$。

更新于: 2022-10-10

112 次浏览

开启你的 职业生涯

完成课程即可获得认证

开始学习
广告