解方程:$\frac{92+4 y}{12}+3 y=48$。
已知:表达式:$\frac{92+4 y}{12}+3y=48$。
求解:求解$y$。
解
已知表达式:$\frac{92+4 y}{12}+3y=48$。
$\Rightarrow \frac{92+4y+36y}{12}=48$
$\Rightarrow \frac{92+40y}{12}=48$
$\Rightarrow 92+40y=576$
$\Rightarrow 40y=576-92$
$\Rightarrow 40y=484$
$\Rightarrow y=\frac{484}{40}$
$\Rightarrow y=\frac{121}{10}$
- 相关文章
- 解下列方程 $\frac{7 y+4}{y+2}=\frac{-4}{3} $
- 解方程:$\frac{3 y+4}{2-6 y}=\frac{-2}{5}$。
- 解下列方程:\( \frac{7 y+4}{y+2}=\frac{-4}{3} \)。
- 解下列方程:$\frac{y-1}{3}-\frac{y-2}{4}=1$
- 解方程:$\frac{2}{5} y\ -\ \frac{5}{8} y\ =\ \frac{5}{12}$
- 解下列方程:\( \frac{3 y+4}{2-6 y}=\frac{-2}{5} \)。
- 解下列方程:$13(y–4)–3(y–9)=5(y+4)$
- 解下列方程组:\( \frac{x}{3}+\frac{y}{4}=4 \)\( \frac{5 x}{6}-\frac{y}{8}=4 \)
- 解下列方程组:$\frac{3}{x+y} +\frac{2}{x-y}=2$$\frac{9}{x+y}-\frac{4}{x-y}=1$
- 解下列方程组:$\frac{x}{3}\ +\ \frac{y}{4}\ =\ 11$ $\frac{5x}{6}\ −\ \frac{y}{3}\ = −7$
- 解关于y的方程:$y+9=12$
- 解方程:\( \frac{0.2 y+5}{3.5 y-3}=\frac{2}{5} \)
- 验证等式性质:$x \times(y + z) = x \times y + x \times z$,其中:(i) \( x=\frac{-3}{7}, y=\frac{12}{13}, z=\frac{-5}{6} \)(ii) \( x=\frac{-12}{5}, y=\frac{-15}{4}, z=\frac{8}{3} \)(iii) \( x=\frac{-8}{3}, y=\frac{5}{6}, z=\frac{-13}{12} \)(iv) \( x=\frac{-3}{4}, y=\frac{-5}{2}, z=\frac{7}{6} \)
- 将下列方程组化为线性方程组后求解:(i) \( \frac{1}{2 x}+\frac{1}{3 y}=2 \)\( \frac{1}{3 x}+\frac{1}{2 y}=\frac{13}{6} \)(ii) \( \frac{2}{\sqrt{x}}+\frac{3}{\sqrt{y}}=2 \)\( \frac{4}{\sqrt{x}}-\frac{9}{\sqrt{y}}=-1 \)(iii) \( \frac{4}{x}+3 y=14 \)\( \frac{3}{x}-4 y=23 \)(iv) \( \frac{5}{x-1}+\frac{1}{y-2}=2 \)\( \frac{6}{x-1}-\frac{3}{y-2}=1 \)(v) \( \frac{7 x-2 y}{x y}=5 \)\( \frac{8 x+7 y}{x y}=15 \),(vi) \( 6 x+3 y=6 x y \)\( 2 x+4 y=5 x y \)(vii) \( \frac{10}{x+y}+\frac{2}{x-y}=4 \)\( \frac{15}{x+y}-\frac{5}{x-y}=-2 \)(viii) \( \frac{1}{3 x+y}+\frac{1}{3 x-y}=\frac{3}{4} \)\( \frac{1}{2(3 x+y)}-\frac{1}{2(3 x-y)}=\frac{-1}{8} \).
- 求 $(x +y) \div (x - y)$ 的值,其中:(i) \( x=\frac{2}{3}, y=\frac{3}{2} \)(ii) \( x=\frac{2}{5}, y=\frac{1}{2} \)(iii) \( x=\frac{5}{4}, y=\frac{-1}{3} \)(iv) \( x=\frac{2}{7}, y=\frac{4}{3} \)(v) \( x=\frac{1}{4}, y=\frac{3}{2} \)