解下列方程组
\( \frac{x}{3}+\frac{y}{4}=4 \)
\( \frac{5 x}{6}-\frac{y}{8}=4 \)
已知:
已知方程组为
\( \frac{x}{3}+\frac{y}{4}=4 \)
\( \frac{5 x}{6}-\frac{y}{8}=4 \)
解题步骤:
我们需要解出已知方程组。
解:
$\frac{x}{3}+\frac{y}{4}=4$
$\Rightarrow \frac{4x+3y}{12}=4$
$4x+3y=48$
$3y=48-4x$......(i)
$\frac{5x}{6}-\frac{y}{8}=4$
$\Rightarrow \frac{20x-3y}{24}=4$
$20x-3y=96$
$20x=96+3y$
$20x=96+48-4x$ [由(i)得]
$24x=144$
$24x=144$
$x=\frac{144}{24}$
$x=6$
这意味着:
$y=\frac{48-4(6)}{3}$
$y=\frac{24}{3}$
$y=8$
因此,已知方程组的解为 $x=6$ 和 $y=8$。
- 相关文章
- 解下列方程组:\( 4 x+\frac{6}{y}=15 \)\( 6 x-\frac{8}{y}=14, y ≠ 0 \)
- 解下列方程组: $\frac{2}{x}\ +\ \frac{3}{y}\ =\ 13$$\frac{5}{x}\ –\ \frac{4}{y}\ =\ -2$
- 通过将下列方程组简化为线性方程组来解:(i) \( \frac{1}{2 x}+\frac{1}{3 y}=2 \)\( \frac{1}{3 x}+\frac{1}{2 y}=\frac{13}{6} \)(ii) \( \frac{2}{\sqrt{x}}+\frac{3}{\sqrt{y}}=2 \)\( \frac{4}{\sqrt{x}}-\frac{9}{\sqrt{y}}=-1 \)(iii) \( \frac{4}{x}+3 y=14 \)\( \frac{3}{x}-4 y=23 \)(iv) \( \frac{5}{x-1}+\frac{1}{y-2}=2 \)\( \frac{6}{x-1}-\frac{3}{y-2}=1 \)(v) \( \frac{7 x-2 y}{x y}=5 \)\( \frac{8 x+7 y}{x y}=15 \)(vi) \( 6 x+3 y=6 x y \)\( 2 x+4 y=5 x y \)(vii) \( \frac{10}{x+y}+\frac{2}{x-y}=4 \)\( \frac{15}{x+y}-\frac{5}{x-y}=-2 \)(viii) \( \frac{1}{3 x+y}+\frac{1}{3 x-y}=\frac{3}{4} \)\( \frac{1}{2(3 x+y)}-\frac{1}{2(3 x-y)}=\frac{-1}{8} \).
- 解下列方程组: $\frac{x}{3}\ +\ \frac{y}{4}\ =\ 11$ $\frac{5x}{6}\ −\ \frac{y}{3}\ =\ −7$
- 解下列方程组:$\frac{3}{x+y} +\frac{2}{x-y}=2$$\frac{9}{x+y}-\frac{4}{x-y}=1$
- 解下列方程:\( \frac{3 y+4}{2-6 y}=\frac{-2}{5} \).
- 解下列方程组: $x\ +\ \frac{y}{2}\ =\ 4$ $2y\ +\ \frac{x}{3}\ =\ 5$
- 解下列方程组: $\frac{2}{x}\ +\ \frac{3}{y}\ =\ 2$ $\frac{4}{x}\ –\ \frac{9}{y}\ =\ -1$
- 解下列方程:\( \frac{7 y+4}{y+2}=\frac{-4}{3} \).
- 解下列方程组:$\frac{10}{x+y} +\frac{2}{x-y}=4$$\frac{15}{x+y}-\frac{9}{x-y}=-2$
- 验证性质:$x \times(y + z) = x \times y + x \times z$,取:(i) \( x=\frac{-3}{7}, y=\frac{12}{13}, z=\frac{-5}{6} \)(ii) \( x=\frac{-12}{5}, y=\frac{-15}{4}, z=\frac{8}{3} \)(iii) \( x=\frac{-8}{3}, y=\frac{5}{6}, z=\frac{-13}{12} \)(iv) \( x=\frac{-3}{4}, y=\frac{-5}{2}, z=\frac{7}{6} \)
- 解下列方程组: $\frac{2}{x}\ +\ \frac{3}{y}\ =\ \frac{9}{xy}$ $\frac{4}{x}\ +\ \frac{9}{y}\ =\ \frac{21}{xy}$
- 如果 $(\frac{3}{5})^{4}$ $\times$ $(\frac{15}{10})^{4}$=$(\frac{x}{y})^{4}$,求 $\frac{x}{y}$ 的值。
- 解下列方程组: $\frac{x}{7}\ +\ \frac{y}{3}\ =\ 5$ $\frac{x}{2}\ –\ \frac{y}{9}\ =\ 6$
- 求 $(x +y) \div (x - y)$ 的值,如果:(i) \( x=\frac{2}{3}, y=\frac{3}{2} \)(ii) \( x=\frac{2}{5}, y=\frac{1}{2} \)(iii) \( x=\frac{5}{4}, y=\frac{-1}{3} \)(iv) \( x=\frac{2}{7}, y=\frac{4}{3} \)(v) \( x=\frac{1}{4}, y=\frac{3}{2} \)