解下列方程

a) $ 2 y+\frac{5}{2}=\frac{37}{2} $

b) $ 5 t+28=10 $
c) $ \frac{a}{5}+3=2 $


已知:三个方程为

a) $ 2 y+\frac{5}{2}=\frac{37}{2} $


b) $ 5 t+28=10 $


c) $ \frac{a}{5}+3=2 $


求解:我们需要解出给定的方程(变量)。


a) $2y + \frac{5}{2} = \frac{37}{2}$

$2y = \frac{37}{2} - \frac{5}{2} = \frac{(37-5)}{2}$

$2y = \frac{32}{2}= 16$

$y = 1\frac{6}{2} = 8$

$y = 8$


b) $5t + 28 = 10 $

$5t = 10 - 28$

$5t = - 18$

$t = \frac{-18}{5}$


c) $\frac{a}{5} + 3 = 2$

$\frac{a}{5} = 2 - 3 = -1$

$a = 5 \times - 1$

$a = -5$ 

更新于: 2022年10月10日

47 次浏览

开启你的 职业生涯

通过完成课程获得认证

开始学习
广告

© . All rights reserved.