当一个骰子被掷一次时,求得到偶数的概率。
众所周知,当掷骰子时,有六种可能的结果,
$( 1,\ 2,\ 3,\ 4\ ,5\ ,6)$
我们知道 (2, 4, 6) 是偶数。
∴ 有利结果的数量 = 3
众所周知,有利结果的概率 = 有利结果的数量 / 总可能结果的数量
∴ 得到偶数的概率 = 有利结果的数量 / 总可能结果的数量
$\mathbf{= \frac{3}{6} = \frac{1}{2}}$
广告
众所周知,当掷骰子时,有六种可能的结果,
$( 1,\ 2,\ 3,\ 4\ ,5\ ,6)$
我们知道 (2, 4, 6) 是偶数。
∴ 有利结果的数量 = 3
众所周知,有利结果的概率 = 有利结果的数量 / 总可能结果的数量
∴ 得到偶数的概率 = 有利结果的数量 / 总可能结果的数量
$\mathbf{= \frac{3}{6} = \frac{1}{2}}$