用 C++ 打印无向图中的所有环
在这个问题中,我们给定一个无向图,我们需要打印图中形成的所有环。
无向图是一个相互连接的图。无向图的所有边都是双向的。它也称为无向网络。
图数据结构中的环是指所有顶点都形成一个环的图。
让我们看一个例子来更好地理解这个问题 -
图 -

输出 -
Cycle 1: 2 3 4 5 Cycle 2: 6 7 8
为此,我们将利用图的一些特性。您需要使用图着色方法并对出现在循环图中的所有顶点进行着色。此外,如果一个顶点被部分访问,它将导致一个循环图。因此,我们将对这个顶点和所有后续顶点进行着色,直到再次到达相同的顶点。
算法
Step 1: call DFS traversal for the graph which can color the vertices. Step 2: If a partially visited vertex is found, backtrack till the vertex is reached again and mark all vertices in the path with a counter which is cycle number. Step 3: After completion of traversal, iterate for cyclic edge and push them into a separate adjacency list. Step 4: Print the cycles number wise from the adjacency list.
示例
#include <bits/stdc++.h>
using namespace std;
const int N = 100000;
vector<int> graph[N];
vector<int> cycles[N];
void DFSCycle(int u, int p, int color[], int mark[], int par[], int& cyclenumber){
if (color[u] == 2) {
return;
}
if (color[u] == 1) {
cyclenumber++;
int cur = p;
mark[cur] = cyclenumber;
while (cur != u) {
cur = par[cur];
mark[cur] = cyclenumber;
}
return;
}
par[u] = p;
color[u] = 1;
for (int v : graph[u]) {
if (v == par[u]) {
continue;
}
DFSCycle(v, u, color, mark, par, cyclenumber);
}
color[u] = 2;
}
void insert(int u, int v){
graph[u].push_back(v);
graph[v].push_back(u);
}
void printCycles(int edges, int mark[], int& cyclenumber){
for (int i = 1; i <= edges; i++) {
if (mark[i] != 0)
cycles[mark[i]].push_back(i);
}
for (int i = 1; i <= cyclenumber; i++) {
cout << "Cycle " << i << ": ";
for (int x : cycles[i])
cout << x << " ";
cout << endl;
}
}
int main(){
insert(1, 2);
insert(2, 3);
insert(3, 4);
insert(4, 5);
insert(5, 2);
insert(5, 6);
insert(6, 7);
insert(7, 8);
insert(6, 8);
int color[N];
int par[N];
int mark[N];
int cyclenumber = 0;
cout<<"Cycles in the Graph are :\n";
int edges = 13;
DFSCycle(1, 0, color, mark, par, cyclenumber);
printCycles(edges, mark, cyclenumber);
}输出
图中的环 -
Cycle 1: 2 3 4 5 Cycle 2: 6 7 8
广告
数据结构
网络
关系数据库管理系统
操作系统
Java
iOS
HTML
CSS
Android
Python
C 编程
C++
C#
MongoDB
MySQL
Javascript
PHP