无向图中所有环的长度乘积(C++)
给定一个无向、无权图作为输入,任务是找到给定图中形成的环的乘积,并显示结果。
示例
输入
在给定的图中,有8个节点,其中5个节点形成一个环,包括1, 6, 3, 5, 8,其余节点不包含在环中。因此,环的长度为5(因为它包含5个节点),所以乘积为5。
在给定的图中,有12个节点,其中11个(5 + 6)节点形成环,包括1, 6, 3, 5, 8 和 9, 4, 10, 11, 22, 12,其余节点2不包含在环中。因此,环的长度为5 * 6 = 30。
下面程序中使用的算法如下:
- 输入形成环的节点
- 创建DFS函数并调用它来遍历顶点并对其着色
- 节点要么被标记为完全访问,要么被标记为部分访问
- 完全访问的节点不需要再次访问,因此不需要存储它;而部分访问的节点需要存储,因为它们会被再次访问。
- 打印结果
算法
Start Step 1-> declare function to traverse the graph using DFS approach void DFS(int i, int j, int color[], int highlight[], int parent[], int& number) IF color[i] = 2 Return End IF color[i] = 1 Set number++ Declare and set int temp = j Set highlight[temp] = number Loop While temp != i Set temp = parent[temp] Set highlight[temp] = number End Return End Set parent[i] = j Set color[i] = 1 For int k : graph[i] IF k = parent[i] Continue End Call DFS(k, i, color, highlight, parent, number) End Set color[i] = 2 Step 2-> declare function to find product of nodes in cycle int product(int edge, int highlight[], int& number) call unordered_map<int, int> mp Loop For i = 1 and i <= edge and i++ IF (highlight[i] != 0) Set mp[highlight[i]]++ End End Declare and set int temp = 1 Loop For i = 1 and i <= number and i++ Set temp = temp * mp[i] End IF number = 0 Set temp = 0 End return temp Step 3-> In main() Call function as insert(1, 2) to insert a node Declare int color[size], parent[size] Declare int highlight[size] Declare and set int number = 0 Declare and set int edge = 10 Call DFS(1, 0, color, highlight, parent, number) Call print function as product(edge, highlight, number) Stop
示例
#include <bits/stdc++.h> using namespace std; const int size = 100000; vector<int> graph[size]; //function to traverse the graph using DFS approach void DFS(int i, int j, int color[], int highlight[], int parent[], int& number) { // for travered node if (color[i] == 2) { return; } //not completely visited if (color[i] == 1) { number++; int temp = j; highlight[temp] = number; //for backtracking the vertex while (temp != i) { temp = parent[temp]; highlight[temp] = number; } return; } parent[i] = j; color[i] = 1; for (int k : graph[i]) { if (k == parent[i]) { continue; } DFS(k, i, color, highlight, parent, number); } color[i] = 2; } // function for inserting edges to graph void insert(int u, int v) { graph[u].push_back(v); graph[v].push_back(u); } // Find product of nodes in cycle int product(int edge, int highlight[], int& number) { unordered_map<int, int> mp; for (int i = 1; i <= edge; i++) { if (highlight[i] != 0) mp[highlight[i]]++; } int temp = 1; for (int i = 1; i <= number; i++) { temp = temp * mp[i]; } if (number == 0) temp = 0; return temp; } int main() { //for inserting a node in the graph insert(1, 2); insert(2, 3); insert(3, 4); insert(4, 6); insert(4, 7); insert(5, 6); insert(3, 5); insert(7, 8); insert(6, 10); insert(5, 9); insert(10, 11); int color[size], parent[size]; int highlight[size]; int number = 0; int edge = 10; DFS(1, 0, color, highlight, parent, number); // function to print the cycles cout<<"product of all the nodes in the cycle is :"<< product(edge, highlight, number); return 0; }
输出
Product of all the nodes in the cycle is :4
广告