无向图中所有环的长度乘积(C++)


给定一个无向、无权图作为输入,任务是找到给定图中形成的环的乘积,并显示结果。

示例

输入

在给定的图中,有8个节点,其中5个节点形成一个环,包括1, 6, 3, 5, 8,其余节点不包含在环中。因此,环的长度为5(因为它包含5个节点),所以乘积为5。

在给定的图中,有12个节点,其中11个(5 + 6)节点形成环,包括1, 6, 3, 5, 8 和 9, 4, 10, 11, 22, 12,其余节点2不包含在环中。因此,环的长度为5 * 6 = 30。

下面程序中使用的算法如下

  • 输入形成环的节点
  • 创建DFS函数并调用它来遍历顶点并对其着色
  • 节点要么被标记为完全访问,要么被标记为部分访问
  • 完全访问的节点不需要再次访问,因此不需要存储它;而部分访问的节点需要存储,因为它们会被再次访问。
  • 打印结果

算法

Start
Step 1-> declare function to traverse the graph using DFS approach
   void DFS(int i, int j, int color[], int highlight[], int parent[], int& number)
   IF color[i] = 2
      Return
   End
   IF color[i] = 1
      Set number++
      Declare and set int temp = j
      Set highlight[temp] = number
      Loop While temp != i
         Set temp = parent[temp]
         Set highlight[temp] = number
      End
      Return
   End
   Set parent[i] = j
   Set color[i] = 1
   For int k : graph[i]
   IF k = parent[i]
      Continue
   End
   Call DFS(k, i, color, highlight, parent, number)
   End
Set color[i] = 2
Step 2-> declare function to find product of nodes in cycle
   int product(int edge, int highlight[], int& number)
   call unordered_map<int, int> mp
   Loop For i = 1 and i <= edge and i++
      IF (highlight[i] != 0)
         Set mp[highlight[i]]++
      End
   End
   Declare and set int temp = 1
   Loop For i = 1 and i <= number and i++
      Set temp = temp * mp[i]
   End
   IF number = 0
      Set temp = 0
   End
return temp
Step 3-> In main()
   Call function as insert(1, 2) to insert a node
   Declare int color[size], parent[size]
   Declare int highlight[size]
   Declare and set int number = 0
   Declare and set int edge = 10
   Call DFS(1, 0, color, highlight, parent, number)
   Call print function as product(edge, highlight, number)
Stop

示例

 在线演示

#include <bits/stdc++.h>
using namespace std;
const int size = 100000;
vector<int> graph[size];
//function to traverse the graph using DFS approach
void DFS(int i, int j, int color[], int highlight[], int parent[], int& number) {
   // for travered node
   if (color[i] == 2) {
      return;
   }
   //not completely visited
   if (color[i] == 1) {
      number++;
      int temp = j;
      highlight[temp] = number;
      //for backtracking the vertex
      while (temp != i) {
         temp = parent[temp];
         highlight[temp] = number;
      }
      return;
   }
   parent[i] = j;
   color[i] = 1;
   for (int k : graph[i]) {
      if (k == parent[i]) {
         continue;
      }
      DFS(k, i, color, highlight, parent, number);
   }
   color[i] = 2;
}
// function for inserting edges to graph
void insert(int u, int v) {
   graph[u].push_back(v);
   graph[v].push_back(u);
}
// Find product of nodes in cycle
int product(int edge, int highlight[], int& number) {
   unordered_map<int, int> mp;
   for (int i = 1; i <= edge; i++) {
      if (highlight[i] != 0)
      mp[highlight[i]]++;
   }
   int temp = 1;
   for (int i = 1; i <= number; i++) {
      temp = temp * mp[i];
   }
   if (number == 0)
   temp = 0;
   return temp;
}
int main() {
   //for inserting a node in the graph
   insert(1, 2);
   insert(2, 3);
   insert(3, 4);
   insert(4, 6);
   insert(4, 7);
   insert(5, 6);
   insert(3, 5);
   insert(7, 8);
   insert(6, 10);
   insert(5, 9);
   insert(10, 11);
   int color[size], parent[size];
   int highlight[size];
   int number = 0;
   int edge = 10;
   DFS(1, 0, color, highlight, parent, number);
   // function to print the cycles
   cout<<"product of all the nodes in the cycle is :"<< product(edge, highlight, number);
   return 0;
}

输出

Product of all the nodes in the cycle is :4

更新于:2019年12月23日

190 次浏览

开启你的职业生涯

完成课程获得认证

开始学习
广告