迷宫中的老鼠可以跳跃或进行多步走动?
迷宫中的老鼠问题是回溯算法中一个非常着名的难题。我们在这里将看到这一难题的变种。假设有一个NxN的迷宫M,起点是左上角M[0, 0],终点是右下角M[N – 1, N - 1]。将一个老鼠放置在起点。我们的目的是找到一条从起点到终点的道路,这样老鼠就可以到达终点。老鼠现在可以跳跃(变数)。现在有一些约束:
- 老鼠可以向右或向下移动。
- 迷宫中单元格中的0表示该单元格被阻塞。
- 非零单元格表示有效的路径。
- 单元格中的数字表示老鼠从该单元格可以进行的最大跳跃数。
算法
ratInMaze
begin if destination is reached, then print the solution matrix else 1. Place the current cell inside the solution matrix as 1 2. Move forward or jump (check max jump value) and recursively check if move leads to solution or not. 3. If the move taken from the step 2 is not correct, then move down, and check it leads to the solution or not 4. If none of the solutions in step 2 and 3 are correct, then make the current cell 0. end if end
示例
#include <iostream> #define N 4 using namespace std; void dispSolution(int sol[N][N]) { for (int i = 0; i < N; i++) { for (int j = 0; j < N; j++) cout << sol[i][j] << " "; cout << endl; } } bool isSafe(int maze[N][N], int x, int y) { //check whether x,y is valid or not // when (x, y) is outside of the maze, then return false if (x >= 0 && x < N && y >= 0 && y < N && maze[x][y] != 0) return true; return false; } bool ratMazeSolve(int maze[N][N], int x, int y, int sol[N][N]) { if (x == N - 1 && y == N - 1) { //if destination is found, return true sol[x][y] = 1; return true; } if (isSafe(maze, x, y)) { sol[x][y] = 1; //mark 1 into solution matrix for (int i = 1; i <= maze[x][y] && i < N; i++) { if (ratMazeSolve(maze, x + i, y, sol)) //move right return true; if (ratMazeSolve(maze, x, y + i, sol)) //move down return true; } sol[x][y] = 0; //if the solution is not valid, then make it 0 return false; } return false; } bool solveMaze(int maze[N][N]) { int sol[N][N] = { { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 } }; if (!ratMazeSolve(maze, 0, 0, sol)) { cout << "Solution doesn't exist"; return false; } dispSolution(sol); return true; } main() { int maze[N][N] = { { 2, 1, 0, 0 }, { 3, 0, 0, 1 }, { 0, 1, 0, 1 }, { 0, 0, 0, 1 } }; solveMaze(maze); }
输出
1 0 0 0 1 0 0 1 0 0 0 1 0 0 0 1
广告