C++中步长为2或3时到达某点的概率
一个人“A”从起始位置X = 0出发行走,任务是找到恰好到达X = num的概率,如果他/她可以每次走2步或3步。步长为2的概率为P,步长为3的概率为1 - P。
输入
num = 5, p = 0.2
输出
0.32
解释
There can be 2 ways to reach num, i.e, 5 2+3 with probability 0.2 * 0.8 = 0.16 3+2 with probability 0.8 * 0.2 = 0.16 So, total probability will be 0.16 + 0.16 = 0.32
输入
num = 2, p = 0.1
输出
0.1
下面使用的方法如下,用于解决问题
我们将使用动态规划方法来解决这个问题。
在解决方案中,我们将:
声明一个大小为num+1的概率数组,并将其值赋值为:设置probab[0] = 1,设置probab[1] = 0,设置probab[2] = p,设置probab[3] = 1 – p
迭代i从0到num,同时递增其值
对于每个i,设置probab[i] = (p)*probab[i - 2] + (1 - p) * probab[i - 3]
返回probab[num]
打印结果。
算法
Start Step 1→ declare function to calculate probability of reaching a point with 2 or 3 steps at a time float probab(int num, float p) Declare double probab[num + 1] `Set probab[0] = 1 Set probab[1] = 0 Set probab[2] = p Set probab[3] = 1 – p Loop For int i = 4 and i <= num and ++i Set probab[i] = (p)*probab[i - 2] + (1 - p) * probab[i - 3] End return probab[num] Step 2→ In main() Declare int num = 2 Declare float p = 0.1 Call probab(num, p) Stop
示例
#include <bits/stdc++.h>
using namespace std;
//function to calculate probability of reaching a point with 2 or 3 steps at a time
float probab(int num, float p){
double probab[num + 1];
probab[0] = 1;
probab[1] = 0;
probab[2] = p;
probab[3] = 1 - p;
for (int i = 4; i <= num; ++i)
probab[i] = (p)*probab[i - 2] + (1 - p) * probab[i - 3];
return probab[num];
}
int main(){
int num = 2;
float p = 0.1;
cout<<"probability is : "<<probab(num, p);
return 0;
}输出
如果运行上面的代码,它将生成以下输出:
probability is : 0.1
广告
数据结构
网络
关系数据库管理系统 (RDBMS)
操作系统
Java
iOS
HTML
CSS
Android
Python
C语言编程
C++
C#
MongoDB
MySQL
Javascript
PHP