使用 Python 返回一维 Hermite 系列系数的缩放伴随矩阵
要返回一维多项式系数数组的缩放伴随矩阵,请在 Python Numpy 中返回 hermite.hermcompanion() 方法。基多项式经过缩放,以便当 c 是 Hermite 基多项式时,伴随矩阵是对称的。这比未缩放的情况提供了更好的特征值估计,并且对于基多项式,如果使用 numpy.linalg.eigvalsh 获取特征值,则保证特征值是实数。该方法返回维度为 (deg, deg) 的缩放伴随矩阵。参数 c 是从低到高排序的一维 Hermite 系列系数数组。
步骤
首先,导入所需的库 -
import numpy as np from numpy.polynomial import hermite as H
创建一个一维系数数组 -
c = np.array([1, 2, 3])
显示数组 -
print("Our Array...\n",c)
检查维度 -
print("\nDimensions of our Array...\n",c.ndim)
获取数据类型 -
print("\nDatatype of our Array object...\n",c.dtype)
获取形状 -
print("\nShape of our Array object...\n",c.shape)
要返回一维多项式系数数组的缩放伴随矩阵,请在 Python Numpy 中返回 hermite.hermcompanion() 方法 -
print("\nResult...\n",H.hermcompanion(c))
示例
import numpy as np from numpy.polynomial import hermite as H # Create a 1D array of coefficients c = np.array([1, 2, 3]) # Display the array print("Our Array...\n",c) # Check the Dimensions print("\nDimensions of our Array...\n",c.ndim) # Get the Datatype print("\nDatatype of our Array object...\n",c.dtype) # Get the Shape print("\nShape of our Array object...\n",c.shape) # To return the scaled companion matrix of a 1-D array of polynomial coefficients, return the hermite.hermcompanion() method in Python Numpy print("\nResult...\n",H.hermcompanion(c))
输出
Our Array... [1 2 3] Dimensions of our Array... 1 Datatype of our Array object... int64 Shape of our Array object... (3,) Result... [[ 0. 0.58925565] [ 0.70710678 -0.33333333]]
广告