使用Python中一维系数数组评估(x,y)点的二维Hermite级数
要评估(x, y)点的二维Hermite级数,请在Python Numpy中使用hermite.hermval2d()方法。该方法返回在由x和y的对应值对形成的点处二维多项式的值。
第一个参数是x,y。二维级数在(x, y)点处计算,其中x和y必须具有相同的形状。如果x或y是列表或元组,则首先将其转换为ndarray,否则保持不变;如果它不是ndarray,则将其视为标量。第二个参数C是一个系数数组,其排序方式使得多度为i,j的项的系数包含在c[i,j]中。如果c的维度大于二,则其余索引枚举多组系数。
步骤
首先,导入所需的库:
import numpy as np from numpy.polynomial import hermite as H
创建一个一维系数数组:
c = np.array([3, 5])
显示数组:
print("Our Array...\n",c)检查维度:
print("\nDimensions of our Array...\n",c.ndim)获取数据类型:
print("\nDatatype of our Array object...\n",c.dtype)获取形状:
print("\nShape of our Array object...\n",c.shape)要评估(x, y)点的二维Hermite级数,请在Python Numpy中使用hermite.hermval2d()方法:
print("\nResult...\n",H.hermval2d([1,2],[1,2],c))示例
import numpy as np
from numpy.polynomial import hermite as H
# Create a 1d array of coefficients
c = np.array([3, 5])
# Display the array
print("Our Array...\n",c)
# Check the Dimensions
print("\nDimensions of our Array...\n",c.ndim)
# Get the Datatype
print("\nDatatype of our Array object...\n",c.dtype)
# Get the Shape
print("\nShape of our Array object...\n",c.shape)
# To evaluate a 2D Hermite series at points (x, y), use the hermite.hermval2d() method in Python Numpy
print("\nResult...\n",H.hermval2d([1,2],[1,2],c))输出
Our Array... [3 5] Dimensions of our Array... 1 Datatype of our Array object... int64 Shape of our Array object... (2,) Result... [ 59. 105.]
广告
数据结构
网络
关系型数据库管理系统 (RDBMS)
操作系统
Java
iOS
HTML
CSS
Android
Python
C语言编程
C++
C#
MongoDB
MySQL
Javascript
PHP