使用Python中一维系数数组评估(x,y)点的二维Hermite级数
要评估(x, y)点的二维Hermite级数,请在Python Numpy中使用hermite.hermval2d()方法。该方法返回在由x和y的对应值对形成的点处二维多项式的值。
第一个参数是x,y。二维级数在(x, y)点处计算,其中x和y必须具有相同的形状。如果x或y是列表或元组,则首先将其转换为ndarray,否则保持不变;如果它不是ndarray,则将其视为标量。第二个参数C是一个系数数组,其排序方式使得多度为i,j的项的系数包含在c[i,j]中。如果c的维度大于二,则其余索引枚举多组系数。
步骤
首先,导入所需的库:
import numpy as np from numpy.polynomial import hermite as H
创建一个一维系数数组:
c = np.array([3, 5])
显示数组:
print("Our Array...\n",c)
检查维度:
print("\nDimensions of our Array...\n",c.ndim)
获取数据类型:
print("\nDatatype of our Array object...\n",c.dtype)
获取形状:
print("\nShape of our Array object...\n",c.shape)
要评估(x, y)点的二维Hermite级数,请在Python Numpy中使用hermite.hermval2d()方法:
print("\nResult...\n",H.hermval2d([1,2],[1,2],c))
示例
import numpy as np from numpy.polynomial import hermite as H # Create a 1d array of coefficients c = np.array([3, 5]) # Display the array print("Our Array...\n",c) # Check the Dimensions print("\nDimensions of our Array...\n",c.ndim) # Get the Datatype print("\nDatatype of our Array object...\n",c.dtype) # Get the Shape print("\nShape of our Array object...\n",c.shape) # To evaluate a 2D Hermite series at points (x, y), use the hermite.hermval2d() method in Python Numpy print("\nResult...\n",H.hermval2d([1,2],[1,2],c))
输出
Our Array... [3 5] Dimensions of our Array... 1 Datatype of our Array object... int64 Shape of our Array object... (2,) Result... [ 59. 105.]
广告