使用Python和二维系数数组评估三维Hermite级数在(x,y,z)点的值
要评估三维Hermite级数在点(x, y, z)的值,请使用Python NumPy中的`hermite.hermval3d()`方法。该方法返回多维多项式在由x、y和z的对应值三元组形成的点上的值。
第一个参数是x, y, z。三维级数在点(x, y, z)处进行评估,其中x、y和z必须具有相同的形状。如果x、y或z中的任何一个是列表或元组,则首先将其转换为ndarray,否则保持不变;如果它不是ndarray,则将其视为标量。
第二个参数C是一个系数数组,其顺序使得多度为i,j,k的项的系数包含在c[i,j,k]中。如果c的维度大于3,则其余索引枚举多个系数集。
步骤
首先,导入所需的库:
import numpy as np from numpy.polynomial import hermite as H
创建一个二维系数数组:
c = np.arange(4).reshape(2,2)
显示数组:
print("Our Array...\n",c)
检查维度:
print("\nDimensions of our Array...\n",c.ndim)
获取数据类型:
print("\nDatatype of our Array object...\n",c.dtype)
获取形状:
print("\nShape of our Array object...\n",c.shape)
要评估三维Hermite级数在点(x, y, z)的值,请使用Python NumPy中的`hermite.hermval3d()`方法:
print("\nResult...\n",H.hermval3d([1,2],[1,2],[1,2],c))
示例
import numpy as np from numpy.polynomial import hermite as H # Create a 2d array of coefficients c = np.arange(4).reshape(2,2) # Display the array print("Our Array...\n",c) # Check the Dimensions print("\nDimensions of our Array...\n",c.ndim) # Get the Datatype print("\nDatatype of our Array object...\n",c.dtype) # Get the Shape print("\nShape of our Array object...\n",c.shape) # To evaluate a 3D Hermite series at points (x, y, z), use the hermite.hermval3d() method in Python Numpy print("\nResult...\n",H.hermval3d([1,2],[1,2],[1,2],c))
输出
Our Array... [[0 1] [2 3]] Dimensions of our Array... 2 Datatype of our Array object... int64 Shape of our Array object... (2, 2) Result... [138. 258.]
广告