如果两个NumPy数组在容差范围内逐元素相等,则返回True


要在给定容差范围内判断两个数组是否逐元素相等并返回True,请使用Python NumPy中的**ma.allclose()**方法。此函数等效于allclose,不同之处在于,根据masked_equal参数,掩码值被视为相等(默认)或不相等。“masked_values”参数用于设置两个数组中的掩码值是否被认为相等(True)或不相等(False)。

如果两个数组在给定容差范围内相等,则返回True,否则返回False。如果任一数组包含NaN,则返回False。

掩码数组是标准numpy.ndarray和掩码的组合。掩码要么是nomask,表示关联数组的没有任何值无效,要么是一个布尔数组,它决定关联数组的每个元素的值是否有效。

步骤

首先,导入所需的库:

import numpy as np

使用numpy.arange()方法创建一个包含整数元素的3x3数组:

arr1 = np.arange(9).reshape((3,3))
print("Array1...
", arr1) print("
Array type...
", arr1.dtype)

创建掩码数组1:

arr1 = ma.array(arr1)

掩码数组1:

arr1[0, 1] = ma.masked
arr1[1, 1] = ma.masked

显示掩码数组1:

print("
Masked Array1...
",arr1)

使用numpy.arange()方法创建另一个包含整数元素的3x3数组:

arr2 = np.arange(9).reshape((3,3))
print("
Array2...
", arr2) print("
Array type...
", arr2.dtype)

创建掩码数组2:

arr2 = ma.array(arr2)

掩码数组2:

arr2[2, 0] = ma.masked
arr2[2, 2] = ma.masked

显示掩码数组2:

print("
Masked Array2...
",arr2)

要在给定容差范围内判断两个数组是否逐元素相等并返回True,请使用Python NumPy中的ma.allclose()方法:

print("
Result...
",ma.allclose(arr1, arr2))

示例

import numpy as np
import numpy.ma as ma

# Array 1
# Creating a 3x3 array with int elements using the numpy.arange() method
arr1 = np.arange(9).reshape((3,3))
print("Array1...
", arr1) print("
Array type...
", arr1.dtype) # Get the dimensions of the Array print("
Array Dimensions...
",arr1.ndim) # Get the shape of the Array print("
Our Array Shape...
",arr1.shape) # Get the number of elements of the Array print("
Elements in the Array...
",arr1.size) # Create a masked array arr1 = ma.array(arr1) # Mask Array1 arr1[0, 1] = ma.masked arr1[1, 1] = ma.masked # Display Masked Array 1 print("
Masked Array1...
",arr1) # Array 2 # Creating another 3x3 array with int elements using the numpy.arange() method arr2 = np.arange(9).reshape((3,3)) print("
Array2...
", arr2) print("
Array type...
", arr2.dtype) # Get the dimensions of the Array print("
Array Dimensions...
",arr2.ndim) # Get the shape of the Array print("
Our Array Shape...
",arr2.shape) # Get the number of elements of the Array print("
Elements in the Array...
",arr2.size) # Create a masked array arr2 = ma.array(arr2) # Mask Array2 arr2[2, 0] = ma.masked arr2[2, 2] = ma.masked # Display Masked Array 2 print("
Masked Array2...
",arr2) # To Return True if two arrays are element-wise equal within a tolerance, use the ma.allclose() method in Python Numpy print("
Result...
",ma.allclose(arr1, arr2))

输出

Array1...
[[0 1 2]
[3 4 5]
[6 7 8]]

Array type...
int64

Array Dimensions...
2

Our Array Shape...
(3, 3)

Elements in the Array...
9

Masked Array1...
[[0 -- 2]
[3 -- 5]
[6 7 8]]

Array2...
[[0 1 2]
[3 4 5]
[6 7 8]]

Array type...
int64

Array Dimensions...
2

Our Array Shape...
(3, 3)

Elements in the Array...
9

Masked Array2...
[[0 1 2]
[3 4 5]
[-- 7 --]]

Result...
True

更新于:2022年2月18日

316 次浏览

启动您的职业生涯

完成课程获得认证

开始学习
广告