如果两个NumPy数组在容差范围内逐元素相等,则返回True
要在给定容差范围内判断两个数组是否逐元素相等并返回True,请使用Python NumPy中的**ma.allclose()**方法。此函数等效于allclose,不同之处在于,根据masked_equal参数,掩码值被视为相等(默认)或不相等。“masked_values”参数用于设置两个数组中的掩码值是否被认为相等(True)或不相等(False)。
如果两个数组在给定容差范围内相等,则返回True,否则返回False。如果任一数组包含NaN,则返回False。
掩码数组是标准numpy.ndarray和掩码的组合。掩码要么是nomask,表示关联数组的没有任何值无效,要么是一个布尔数组,它决定关联数组的每个元素的值是否有效。
步骤
首先,导入所需的库:
import numpy as np
使用numpy.arange()方法创建一个包含整数元素的3x3数组:
arr1 = np.arange(9).reshape((3,3))
print("Array1...
", arr1)
print("
Array type...
", arr1.dtype)创建掩码数组1:
arr1 = ma.array(arr1)
掩码数组1:
arr1[0, 1] = ma.masked arr1[1, 1] = ma.masked
显示掩码数组1:
print("
Masked Array1...
",arr1)使用numpy.arange()方法创建另一个包含整数元素的3x3数组:
arr2 = np.arange(9).reshape((3,3))
print("
Array2...
", arr2)
print("
Array type...
", arr2.dtype)创建掩码数组2:
arr2 = ma.array(arr2)
掩码数组2:
arr2[2, 0] = ma.masked arr2[2, 2] = ma.masked
显示掩码数组2:
print("
Masked Array2...
",arr2)要在给定容差范围内判断两个数组是否逐元素相等并返回True,请使用Python NumPy中的ma.allclose()方法:
print("
Result...
",ma.allclose(arr1, arr2))示例
import numpy as np
import numpy.ma as ma
# Array 1
# Creating a 3x3 array with int elements using the numpy.arange() method
arr1 = np.arange(9).reshape((3,3))
print("Array1...
", arr1)
print("
Array type...
", arr1.dtype)
# Get the dimensions of the Array
print("
Array Dimensions...
",arr1.ndim)
# Get the shape of the Array
print("
Our Array Shape...
",arr1.shape)
# Get the number of elements of the Array
print("
Elements in the Array...
",arr1.size)
# Create a masked array
arr1 = ma.array(arr1)
# Mask Array1
arr1[0, 1] = ma.masked
arr1[1, 1] = ma.masked
# Display Masked Array 1
print("
Masked Array1...
",arr1)
# Array 2
# Creating another 3x3 array with int elements using the numpy.arange() method
arr2 = np.arange(9).reshape((3,3))
print("
Array2...
", arr2)
print("
Array type...
", arr2.dtype)
# Get the dimensions of the Array
print("
Array Dimensions...
",arr2.ndim)
# Get the shape of the Array
print("
Our Array Shape...
",arr2.shape)
# Get the number of elements of the Array
print("
Elements in the Array...
",arr2.size)
# Create a masked array
arr2 = ma.array(arr2)
# Mask Array2
arr2[2, 0] = ma.masked
arr2[2, 2] = ma.masked
# Display Masked Array 2
print("
Masked Array2...
",arr2)
# To Return True if two arrays are element-wise equal within a tolerance, use the ma.allclose() method in Python Numpy
print("
Result...
",ma.allclose(arr1, arr2))输出
Array1... [[0 1 2] [3 4 5] [6 7 8]] Array type... int64 Array Dimensions... 2 Our Array Shape... (3, 3) Elements in the Array... 9 Masked Array1... [[0 -- 2] [3 -- 5] [6 7 8]] Array2... [[0 1 2] [3 4 5] [6 7 8]] Array type... int64 Array Dimensions... 2 Our Array Shape... (3, 3) Elements in the Array... 9 Masked Array2... [[0 1 2] [3 4 5] [-- 7 --]] Result... True
广告
数据结构
网络
关系数据库管理系统(RDBMS)
操作系统
Java
iOS
HTML
CSS
Android
Python
C语言编程
C++
C#
MongoDB
MySQL
Javascript
PHP