样本空间
介绍
在日常生活中,我们遇到各种具有多种结果的活动。虽然我们无法预测确切的结果,但我们可以估计该事件或活动的所有可能结果。在本教程中,我们将讨论样本空间、一些特殊事件及其可能的结果,并附带解题示例。
样本空间
样本空间是概率论的一个概念,它是随机事件或实验所有可能结果的集合。样本空间用集合符号表示,通常用 S 表示。此外,它也可以用 U(全集)或 𝛺 表示。样本空间包含数字、单词、字母或符号。
同时抛掷 n 枚硬币的样本空间,n = 2, 3, 4, 5
一枚硬币有两面,即正面和反面。让我们将正面表示为“H”,反面表示为“T”。
同时抛掷两枚硬币 -
同时抛掷两枚硬币的可能结果如下 $\mathrm{S\:=\:\lbrace\:(H\:,\:H)\:,\:(H\:,\:T)\:,\:(T\:,\:H)\:,\:(T\:,\:T)\:\rbrace\:}$
$\mathrm{结果数\:=\:4(2^{2})\:(如图所示)}$.
同时抛掷三枚硬币 -
同时抛掷三枚硬币的可能结果如下。
$\mathrm{S\:=\:\lbrace\:(H\:,\:H\:,\:H)\:,\:(H\:,\:H\:,\:T)\:,\:(H\:,\:T\:,\:H)\:,\:(H\:,\:T\:,\:T)\:,\:(T\:,\:H\:,\:H)\:,\:(T\:,\:H\:,\:T)\:,\:(T\:,\:T\:,\:H)\:,\:(T\:,\:T\:,\:T)\rbrace}$
$\mathrm{结果数\:=\:8(2^{3})}$
同时抛掷四枚硬币 -
同时抛掷四枚硬币的可能结果如下。
$\mathrm{(H\:,\:H\:,\:H\:,\:H)\:,\:(H\:,\:H\:,\:H\:,\:T)\:,\:(H\:,\:H\:,\:T\:,\:H),(H\:,\:H\:,\:T\:,\:T)\:,\:(H\:,\:T\:,\:H\:,\:H)\:,\:(H\:,\:T\:,\:H\:,\:T)\:,\:(H\:,\:T\:,\:T\:,\:T)\:,\:(H\:,\:H\:,\:T\:,\:T)\:,\:(T\:,\:H\:,\:H\:,\:H)\:,\:(T\:,\:T\:,\:H\:,\:H)\:,\:(T\:,\:H\:,\:T\:,\:H)\:,\:(T\:,\:H\:,\:H\:,\:T)\:,\:(T\:,\:T\:,\:T\:,\:H)\:,\:(T\:,\:T\:,\:H\:,\:T)\:,\:(T\:,\:H\:,\:T\:,\:T)\:,\:(T\:,\:T\:,\:T\:,\:T)}$
$\mathrm{结果数\:=\:16(2^{4})}$
同时抛掷五枚硬币 -
同时抛掷五枚硬币的可能结果如下。
$\mathrm{\lbrace\:(H\:,\:H\:,\:H\:,\:H\:,\:H)\:,\:(H\:,\:H\:,\:H\:,\:H\:,\:T)\:,\:(H\:,\:H\:,\:H\:,\:T\:,\:T)\:,\:(H\:,\:H\:,\:T\:,\:T\:,\:T)\:,\:(H\:,\:T\:,\:T\:,\:T\:,\:T)\:,\:(T\:,\:T\:,\:T\:,\:T\:,\:T)\:,\:(T\:,\:T\:,\:T\:,\:T\:,\:H)\:,\:(T\:,\:T\:,\:T\:,\:H\:,\:H)\:,\:(T\:,\:T\:,\:H\:,\:H\:,\:H)\:,\:(T\:,\:H\:,\:H\:,\:H)\:,\:(H\:,\:T\:,\:H\:,\:T\:,\:H)\:,\:(T\:,\:H\:,\:T\:,\:H\:,\:T)\:,\:(H\:,\:H\:,\:T\:,\:H\:,\:H)\:,\:(T\:,\:T\:,\:H\:,\:T\:,\:T)\:,\:(H\:,\:T\:,\:T\:,\:H\:,\:T)\:,\:(T\:,\:H\:,\:H\:,\:T\:,\:H)\:,\:(T\:,\:H\:,\:H\:,\:H\:,\:T)\:,\:(H\:,\:T\:,\:T\:,\:T\:,\:H)\:,\:(T\:,\:H\:,\:H\:,\:T\:,\:T)\:,\:(H\:,\:T\:,\:T\:,\:H\:,\:H)\:,\:(H\:,\:H\:,\:T\:,\:T\:,\:H)\:,\:(T\:,\:T\:,\:H\:,\:H\:,\:T)\:,\:(T\:,\:T\:,\:H\:,\:T\:,\:H)\:,\:(H\:,\:H\:,\:T\:,\:H\:,\:T)\:,\:(H\:,\:T\:,\:H\:,\:T\:,\:T)\:,\:(T\:,\:H\:,\:T\:,\:H\:,\:H)\:,\:(T\:,\:H\:,\:T\:,\:H\:,\:H)\:,\:(T\:,\:H\:,\:T\:,\:T\:,\:H)\:,\:(H\:,\:T\:,\:H\:,\:H\:,\:T)\:,\:(H\:,\:T\:,\:H\:,\:T\:,\:T)\:,\:(T\:,\:H\:,\:T\:,\:H\:,\:H)\:,\:(H\:,\:H\:,\:H\:,\:T\:,\:H)\:,\:(T, T\:,\:T\:,\:H\:,\:T)\:\rbrace }$
$\mathrm{结果数\:=\:32(2^{5})}$
同时抛掷 2 个骰子的样本空间
如果同时抛掷两个骰子,我们将得到 36 个结果,如下所示 -
$\mathrm{S\:=\:\lbrace\:(1\:,\:1)\:,\:(1\:,\:2)\:,\:(1\:,\:3)\:,\:(1\:,\:4)\:,\:(1\:,\:5)\:,\:(1\:,\:6)\:,\:(2\:,\:1)\:,\:(2\:,\:2)\:,\:(2\:,\:3)\:,\:(2\:,\:4)\:,\:(2\:,\:5)\:,\:(2\:,\:6)\:,\:(3\:,\:1)\:,\:(3\:,\:2)\:,\:(3\:,\:3)\:,\:(3\:,\:4)\:,\:(3\:,\:5)\:,\:(3\:,\:6)\:,\:(4\:,\:1)\:,\:(4, 2)\:,\:(4\:,\:3)\:,\:(4\:,\:4)\:,\:(4\:,\:5)\:,\:(4\:,\:6)\:,\:(5,1)\:,\:(5\:,\:2)\:,\:(5\:,\:3)\:,\:(5\:,\:4)\:,\:(5\:,\:5)\:,\:(5\:,\:6)\:,\:(6\:,\:1)\:,\:(6\:,\:2)\:,\:(6\:,\:3)\:,\:(6\:,\:4)\:,\:(6\:,\:5)\:,\:(6\:,\:6)\rbrace\:.}$
同时抛掷 1、2、3 枚硬币和 1 个骰子的样本空间
让我们考虑抛掷一枚硬币和一个骰子的事件。可能的结果将是
$\mathrm{S\:=\:\lbrace\:(H\:,\:1)\:,\:(2\:,\:H)\:,\:(3\:,\:H)\:,\:(4\:,\:H)\:,\:(5\:,\:H)\:,\:(6\:,\:H)\:,\:(1\:,\:T)\:,\:(2\:,\:T)\:,\:(3\:,\:T)\:,\:(4\:,\:T)\:,\:(5\:,\:T)\:,\:(6, H)\:\rbrace\:.}$
$\mathrm{结果总数\:=\:2\:\times\:6\:=\:12}$
让我们考虑抛掷两枚硬币和一个骰子的事件。可能的结果将是
$\mathrm{S\:=\:\lbrace\:(H\:,\:H\:,\:1)\:,\:(H\:,\:H\:,\:2)\:,\:(H\:,\:H\:,\:3)\:,\:(H\:,\:H\:,\:4)\:,\:(H\:,\:H\:,\:5)\:,\:(H\:,\:H\:,\:6)\:,\:(T\:,\:T\:,\:1)\:,\:(T\:,\:T\:,\:2)\:,\:(T\:,\:T\:,\:3)\:,\:(T\:,\:T\:,\:4)\:,\:(T\:,\:T\:,\:5)\:,\:(T\:,\:T\:,\:6)\:,\:(T\:,\:H\:,\:1)\:,\:(T\:,\:H\:,\:2)\:,\:(T\:,\:H\:,\:3)\:,\:(T\:,\:H\:,\:4)\:,\:(T\:,\:H\:,\:5)\:,\:(T\:,\:H\:,\:6)\:,\:(H\:,\:T\:,\:1)\:,\:(H\:,\:T\:,\:2)\:,\:(H\:,\:T\:,\:3)\:,\:(H\:,\:T\:,\:4)\:,\:(H\:,\:T\:,\:5)\:,\:(H\:,\:T\:,\:6)\rbrace\:.}$
$\mathrm{结果总数\:=\:2\times\:2\times\:6\:=\:24}$
让我们考虑抛掷三枚硬币和一个骰子的事件
$\mathrm{结果总数\:=\:2\times\:2\times\:2\times\:6\:=\:48}$
$\mathrm{S\:=\:\lbrace\:(H\:,\:H\:,\:H\:,\:1)\:,\:(H\:,\:H\:,\:H\:,\:2)\:,\:(H\:,\:H\:,\:H\:,\:3)\:,\:(H\:,\:H\:,\:H\:,\:4)\:,\:(H\:,\:H\:,\:H\:,\:5)\:,\:(H\:,\:H\:,\:H\:,\:6)\:,\:(H\:,\:H\:,\:T\:,\:1)\:,\:(H\:,\:H\:,\:T\:,\:2)\:,\:(H\:,\:H\:,\:T\:,\:3)\:,\:(H\:,\:H\:,\:T\:,\:4)\:,\:(H\:,\:H\:,\:T\:,\:5)\:,\:(H\:,\:H\:,\:T\:,\:6)\:,\:(H\:,\:T\:,\:H\:,\:1)\:,\:(H\:,\:T\:,\:H\:,\:2)\:,\:(H\:,\:T\:,\:H\:,\:3)\:,\:(H\:,\:T\:,\:H\:,\:4)\:,\:(H\:,\:T\:,\:H\:,\:5)\:,\:(H\:,\:T\:,\:H\:,\:6)\:,\:(H\:,\:T\:,\:T\:,\:1)\:,\:(H\:,\:T\:,\:T\:,\:2)\:,\:(H\:,\:T\:,\:T\:,\:3)\:,\:(H\:,\:T\:,\:T\:,\:4)\:,\:(H\:,\:T\:,\:T\:,\:5)\:,\:(H\:,\:H\:,\:T\:,\:6)\:,\:(T\:,\:H\:,\:H\:,\:1)\:,\:(T\:,\:H\:,\:H\:,\:2)\:,\:(T\:,\:H\:,\:H\:,\:3)\:,\:(T\:,\:H\:,\:H\:,\:4)\:,\:(T\:,\:H\:,\:H\:,\:5)\:,\:(T\:,\:H\:,\:H\:,\:6)\:,\:(T\:,\:H\:,\:T\:,\:1)\:,\:(T\:,\:H\:,\:T\:,\:2)\:,\:(T\:,\:H\:,\:T\:,\:3)\:,\:(T\:,\:H\:,\:T\:,\:4)\:,\:(T\:,\:H\:,\:T\:,\:5)\:,\:(T\:,\:H\:,\:T\:,\:6)\:,\:(T\:,\:T\:,\:H\:,\:1)\:,\:(T\:,\:T\:,\:H\:,\:2)\:,\:(T\:,\:T\:,\:H\:,\:3)\:,\:(T\:,\:T\:,\:H\:,\:4)\:,\:(T\:,\:T\:,\:H\:,\:5)\:,\:(T\:,\:T\:,\:H\:,\:6)\:,\:(T\:,\:T\:,\:T\:,\:1)\:,\:(T\:,\:T\:,\:T\:,\:2)\:,\:(T\:,\:T\:,\:T\:,\:3)\:,\:(T\:,\:T\:,\:T\:,\:4)\:,\:(T\:,\:T\:,\:T\:,\:5)\:,\:(T\:,\:T\:,\:T\:,\:6)\:\rbrace\:}$
事件
事件定义为样本空间的子集。事件是在试验中发生的特定事件。例如,抛硬币时得到正面是一个事件的例子。
$\mathrm{事件\:=\:E\:=\:\lbrace\:\:\rbrace\:}$
$\mathrm{S\:=\:\lbrace\:所有可能的结果\:\rbrace\:}$
概率
在数学中,概率被定义为对事件发生可能性进行的数值描述。换句话说,它说明了事件发生的可能性。概率的数值介于 0 和 1 之间。概率值越高,事件发生的可能性就越大。概率的概念广泛应用于科学、金融、人工智能、博弈论、计算机科学等领域。
解题示例
示例 1
抛硬币时,正面和反面的概率是多少?
解答 -
$\mathrm{正面概率\:=\:\frac{1}{2}}$
$\mathrm{反面概率\:=\:\frac{1}{2}}$
示例 2
给定区间 [1, 12] 的样本空间是什么?
解答 -
由于该区间是闭区间,因此数字 1 和 12 也包含在样本空间中。
因此,样本空间为 $\mathrm{=\:S\:=\:\lbrace\:1\:,\:2\:,\:3\:,\:4\:,\:5\:,\:6\:,\:7\:,\:8\:,\:9\:,\:10\:,\:11\:,\:12\:\rbrace\:}$
结论
本文简要介绍了样本空间。描述了事件和样本空间之间的基本区别,并附带各种示例。此外,还确定了各种知名事件的样本空间。总之,本文可能有助于理解样本空间的基本概念。
常见问题
1. 如果一个骰子抛掷三次,结果数是多少?
如果一个骰子抛掷三次,结果数为 $\mathrm{=\:6\:\times\:6\:\times\:6\:=\:216}$.
2. 概率有哪些应用?
概率的概念广泛应用于科学、金融、人工智能、博弈论、计算机科学等领域。
3. 表示样本空间的可能方法有哪些?
样本空间可以用三种方式表示为
表格形式
列表形式
树状图
4. 概率值可以大于 1 吗?
不可以,因为概率的最大值为 1。因此,它总是小于 1。
5. 如果一枚硬币抛掷 6 次,结果数是多少?
如果一枚硬币抛掷 6 次,结果数为 $\mathrm{2^{6}\:=\:64}$.