NumPy中对掩码数组的每个元素就地减去标量值


要从掩码数组的每个元素就地减去标量值,请在Python NumPy中使用**ma.MaskedArray.__isub__()**方法。

掩码数组是标准numpy.ndarray和掩码的组合。掩码要么是nomask(表示关联数组的任何值均有效),要么是布尔数组,用于确定关联数组的每个元素的值是否有效。

NumPy提供全面的数学函数、随机数生成器、线性代数例程、傅里叶变换等等。它支持各种硬件和计算平台,并且可以与分布式、GPU和稀疏数组库良好配合。

步骤

首先,导入所需的库:

import numpy as np
import numpy.ma as ma

使用numpy.array()方法创建一个包含整数元素的数组:

arr = np.array([[65, 68, 81], [93, 33, 39], [73, 88, 51], [62, 45, 67]])
print("Array...
", arr) print("
Array type...
", arr.dtype)

获取数组的维度:

print("
Array Dimensions...
",arr.ndim)

创建一个掩码数组并屏蔽其中一些无效的值:

maskArr = ma.masked_array(arr, mask =[[1, 1, 0], [ 1, 0, 0], [0, 1, 0], [0, 1, 0]])
print("
Our Masked Array
", maskArr) print("
Our Masked Array type...
", maskArr.dtype)

获取掩码数组的维度:

print("
Our Masked Array Dimensions...
",maskArr.ndim)

获取掩码数组的形状:

print("
Our Masked Array Shape...
",maskArr.shape)

获取掩码数组的元素个数:

print("
Elements in the Masked Array...
",maskArr.size)

标量:

val = 23
print("
The given value...
",val)

要从掩码数组的每个元素就地减去标量值,请使用ma.MaskedArray.__isub__()方法:

print("
Resultant Masked Array...
",maskArr.__isub__(val))

示例

import numpy as np
import numpy.ma as ma

# Create an array with int elements using the numpy.array() method
arr = np.array([[65, 68, 81], [93, 33, 39], [73, 88, 51], [62, 45, 67]])
print("Array...
", arr) print("
Array type...
", arr.dtype) # Get the dimensions of the Array print("
Array Dimensions...
",arr.ndim) # Create a masked array and mask some of them as invalid maskArr = ma.masked_array(arr, mask =[[1, 1, 0], [ 1, 0, 0], [0, 1, 0], [0, 1, 0]]) print("
Our Masked Array
", maskArr) print("
Our Masked Array type...
", maskArr.dtype) # Get the dimensions of the Masked Array print("
Our Masked Array Dimensions...
",maskArr.ndim) # Get the shape of the Masked Array print("
Our Masked Array Shape...
",maskArr.shape) # Get the number of elements of the Masked Array print("
Elements in the Masked Array...
",maskArr.size) # The scalar val = 23 print("
The given value...
",val) # To subtract a scalar value from each element of a masked Array in-place, use the ma.MaskedArray.__isub__() method print("
Resultant Masked Array...
",maskArr.__isub__(val))

输出

Array...
[[65 68 81]
[93 33 39]
[73 88 51]
[62 45 67]]

Array type...
int64

Array Dimensions...
2

Our Masked Array
[[-- -- 81]
[-- 33 39]
[73 -- 51]
[62 -- 67]]

Our Masked Array type...
int64

Our Masked Array Dimensions...
2

Our Masked Array Shape...
(4, 3)

Elements in the Masked Array...
12

The given value...
23

Resultant Masked Array...
[[-- -- 58]
[-- 10 16]
[50 -- 28]
[39 -- 44]]

更新于:2022年2月17日

122次浏览

开启你的职业生涯

完成课程获得认证

开始学习
广告