使用 NumPy 中的 __ipow__() 方法,对掩码数组的每个元素进行原地幂运算,幂值为给定的标量值。
要将掩码数组的每个元素都提升到一个给定的标量值,请在 Python NumPy 中使用 **ma.MaskedArray.__ipow__()** 方法。掩码数组是标准 numpy.ndarray 和掩码的组合。掩码可以是 nomask,表示关联数组的任何值均有效,也可以是布尔值的数组,用于确定关联数组的每个元素的值是否有效。
NumPy 提供了全面的数学函数、随机数生成器、线性代数例程、傅里叶变换等等。它支持各种硬件和计算平台,并且可以很好地与分布式、GPU 和稀疏数组库配合使用。
步骤
首先,导入所需的库 -
import numpy as np import numpy.ma as ma
使用 numpy.array() 方法创建一个包含整数元素的数组 -
arr = np.array([[65, 68, 81], [93, 33, 39], [73, 88, 51], [62, 45, 67]])
print("Array...
", arr)
print("
Array type...
", arr.dtype)获取数组的维度 -
print("
Array Dimensions...
",arr.ndim)
创建一个掩码数组并掩盖其中一些无效元素 -
maskArr = ma.masked_array(arr, mask =[[1, 1, 0], [ 1, 0, 0], [0, 1, 0], [0, 1, 0]])
print("
Our Masked Array
", maskArr)
print("
Our Masked Array type...
", maskArr.dtype)获取掩码数组的维度 -
print("
Our Masked Array Dimensions...
",maskArr.ndim)
获取掩码数组的形状 -
print("
Our Masked Array Shape...
",maskArr.shape)获取掩码数组的元素数量 -
print("
Elements in the Masked Array...
",maskArr.size)
标量 -
val = 3
print("
The given value...
",val)要将掩码数组的每个元素都提升到一个给定的标量值,请使用 ma.MaskedArray.__ipow__() 方法 -
print("
Resultant Masked Array...
",maskArr.__ipow__(val))
示例
import numpy as np
import numpy.ma as ma
# Create an array with int elements using the numpy.array() method
arr = np.array([[65, 68, 81], [93, 33, 39], [73, 88, 51], [62, 45, 67]])
print("Array...
", arr)
print("
Array type...
", arr.dtype)
# Get the dimensions of the Array
print("
Array Dimensions...
",arr.ndim)
# Create a masked array and mask some of them as invalid
maskArr = ma.masked_array(arr, mask =[[1, 1, 0], [ 1, 0, 0], [0, 1, 0], [0, 1, 0]])
print("
Our Masked Array
", maskArr)
print("
Our Masked Array type...
", maskArr.dtype)
# Get the dimensions of the Masked Array
print("
Our Masked Array Dimensions...
",maskArr.ndim)
# Get the shape of the Masked Array
print("
Our Masked Array Shape...
",maskArr.shape)
# Get the number of elements of the Masked Array
print("
Elements in the Masked Array...
",maskArr.size)
# The scalar
val = 3
print("
The given value...
",val)
# To raise each and every element of a masked array to a given scalar value, use the ma.MaskedArray.__ipow__() method
print("
Resultant Masked Array...
",maskArr.__ipow__(val))输出
Array... [[65 68 81] [93 33 39] [73 88 51] [62 45 67]] Array type... int64 Array Dimensions... 2 Our Masked Array [[-- -- 81] [-- 33 39] [73 -- 51] [62 -- 67]] Our Masked Array type... int64 Our Masked Array Dimensions... 2 Our Masked Array Shape... (4, 3) Elements in the Masked Array... 12 The given value... 3 Resultant Masked Array... [[-- -- 531441] [-- 35937 59319] [389017 -- 132651] [238328 -- 300763]]
广告
数据结构
网络
关系型数据库管理系统
操作系统
Java
iOS
HTML
CSS
Android
Python
C 语言编程
C++
C#
MongoDB
MySQL
Javascript
PHP