Tarjan算法求解强连通分量
Tarjan算法用于查找有向图的强连通分量。该算法只需要一次深度优先搜索(DFS)遍历即可实现。
使用DFS遍历,我们可以找到森林的DFS树。从DFS树中,可以找到强连通分量。当找到这样的子树的根时,我们可以显示整个子树。该子树就是一个强连通分量。
输入和输出
Input: Adjacency matrix of the graph. 0 0 1 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 Output: The strongly connected components: 4 3 1 2 0
算法
findComponent(u, disc, low, stack, stackItemFlag)
输入:起始节点、发现时间、low值。disc将保存顶点的发现时间,low将保存关于子树的信息。stack用于保存顶点,另一个标志数组用于跟踪哪个节点在stack中。
输出:显示强连通分量(SCC)。
Begin time := 0 //the value of time will not be initialized for next function calls set disc[u] := time+1 and low[u] := time + 1 time := time + 1 push u into stack stackItemFalg[u] := true for all vertex v which is adjacent with u, do if v is not discovered, then fincComponent(v, disc, low, stack, stackItemFalg) low[u] = minimum of low[u] and low[v] else if stackItemFalg[v] is true, then low[u] := minimum of low[u] and disc[v] done poppedItem := 0 if low[u] = disc[u], then while u is not in the stack top, do poppedItem := top of stack display poppedItem stackItemFlag[poppedItem] := false pop item from stack done poppedItem := top of stack display poppedItem stackItemFlag[poppedItem] := false pop item from stack End
strongConComponent(graph)
输入:给定的图。
输出:所有强连通分量。
Begin initially set all items in the disc array to undiscovered for all elements in low to φ and mark no item is stored into the stack for all node i in the graph, do if disc[i] is undiscovered, then findComponent(i, disc, low, stack, stackItemFlag) End
示例
#include<iostream> #include<stack> #define NODE 5 using namespace std; int graph[NODE][NODE] = { {0, 0, 1, 1, 0}, {1, 0, 0, 0, 0}, {0, 1, 0, 0, 0}, {0, 0, 0, 0, 1}, {0, 0, 0, 0, 0} }; int min(int a, int b) { return (a<b)?a:b; } void findComponent(int u, int disc[], int low[], stack<int>&stk, bool stkItem[]) { static int time = 0; disc[u] = low[u] = ++time; //inilially discovery time and low value is 1 stk.push(u); stkItem[u] = true; //flag as u in the stack for(int v = 0; v<NODE; v++) { if(graph[u][v]) { if(disc[v] == -1) { //when v is not visited findComponent(v, disc, low, stk, stkItem); low[u] = min(low[u], low[v]); } else if(stkItem[v]) //when v is in the stack, update low for u low[u] = min(low[u], disc[v]); } } int poppedItem = 0; if(low[u] == disc[u]) { while(stk.top() != u) { poppedItem = stk.top(); cout << poppedItem << " "; stkItem[poppedItem] = false; //mark as item is popped stk.pop(); } poppedItem = stk.top(); cout << poppedItem <<endl; stkItem[poppedItem] = false; stk.pop(); } } void strongConComponent() { int disc[NODE], low[NODE]; bool stkItem[NODE]; stack<int> stk; for(int i = 0; i<NODE; i++) { //initialize all elements disc[i] = low[i] = -1; stkItem[i] = false; } for(int i = 0; i<NODE; i++) //initialize all elements if(disc[i] == -1) findComponent(i, disc, low, stk, stkItem); } int main() { strongConComponent(); }
输出
4 3 1 2 0
广告