- XGBoost 教程
- XGBoost - 首页
- XGBoost - 概述
- XGBoost - 架构
- XGBoost - 安装
- XGBoost - 超参数
- XGBoost - 使用超参数调优
- XGBoost - 使用 DMatrix
- XGBoost - 分类
- XGBoost - 回归
- XGBoost - 正则化
- XGBoost - 学习排序
- XGBoost - 过拟合控制
- XGBoost - 分位数回归
- XGBoost - 自举方法
- XGBoost - Python 实现
- XGBoost 与其他 Boosting 算法的比较
- ZeroMQ 有用资源
- XGBoost - 有用资源
- XGBoost - 讨论
XGBoost - 安装
XGBoost 是一个改进的分布式梯度提升库,它快速、通用且可移植。XGBoost 的安装方法多种多样,具体取决于操作系统和开发环境。以下是安装 XGBoost 的不同方法。
使用 pip(适用于 Python)
安装 XGBoost 最简单、最常见的方法是通过 pip。因此,您只需在终端中输入以下命令即可下载并安装库及其依赖项。
pip install xgboost
输出
以下是您在终端或命令提示符中运行上述命令后的过程:
Collecting xgboost
Downloading xgboost-1.7.3-py3-none-manylinux2014_x86_64.whl (199.9 MB)
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 199.9/199.9 MB 8.4 MB/s eta 0:00:00
Requirement already satisfied: numpy in /usr/local/lib/python3.8/site-packages (from xgboost) (1.21.2)
Installing collected packages: xgboost
Successfully installed xgboost-1.7.3
使用 Conda(适用于 Anaconda 用户)
如果您使用的是 Anaconda 或 Miniconda,则可以使用 Conda 安装 XGBoost。当您运行以下命令时,它将下载所需的包和依赖项,然后将其安装到您的系统中。
conda install -c conda-forge xgboost
输出
终端输出通常如下所示:
(base) $ conda install -c conda-forge xgboost
Collecting package metadata (current_repodata.json): done
Solving environment: done
## Package Plan ##
environment location: /path/to/conda/environment
added / updated specs:
- xgboost
The following packages will be downloaded:
package | build
------------------------------|-----------------
xgboost-1.7.3 | py38h9b699db_0 70.0 MB
------------------------------------------------------------
Total: 70.0 MB
Proceed ([y]/n)? y
Downloading and Extracting Packages
xgboost-1.7.3 | 70.0 MB | ########## | 100%
Preparing transaction: done
Verifying transaction: done
Executing transaction: done
从源代码构建
如果您想要最新版本的 XGBoost 或想要更改您的构建,您可以通过源代码进行。您需要在计算机上安装 git、cmake 和其他构建工具。
首先,您需要克隆 XGBoost 存储库:
git clone --recursive https://github.com/dmlc/xgboost
以下是终端输出:
$ git clone --recursive https://github.com/dmlc/xgboost Cloning into 'xgboost'... remote: Enumerating objects: 17723, done. remote: Counting objects: 100% (17723/17723), done. remote: Compressing objects: 100% (4181/4181), done. remote: Total 17723 (delta 12943), reused 16361 (delta 11547), pack-reused 0 Receiving objects: 100% (17723/17723), 28.36 MiB | 4.61 MiB/s, done. Resolving deltas: 100% (12943/12943), done.
运行上述命令后,您需要导航到克隆的目录:
cd xgboost
现在像下面这样构建项目:
mkdir build cd build cmake .. make -j4
终端输出如下:
-- The CXX compiler identification is GNU 9.4.0 -- The C compiler identification is GNU 9.4.0 ... -- Configuring done -- Generating done -- Build files have been written to: /path/to/xgboost/build [ 1%] Building CXX object CMakeFiles/xgboost.dir/src/learner.cc.o [ 2%] Building CXX object CMakeFiles/xgboost.dir/src/common/host_device_vector.cc.o ... [100%] Linking CXX executable xgboost [100%] Built target xgboost
最后,安装 python 包:
cd ../python-package python setup.py install
以下是安装包后上述命令的输出:
running install running bdist_egg running egg_info creating xgboost.egg-info writing xgboost.egg-info/PKG-INFO writing dependency_links to xgboost.egg-info/dependency_links.txt writing requirements to xgboost.egg-info/requires.txt writing top-level names to xgboost.egg-info/top_level.txt writing manifest file 'xgboost.egg-info/SOURCES.txt' reading manifest file 'xgboost.egg-info/SOURCES.txt' writing manifest file 'xgboost.egg-info/SOURCES.txt' installing library code to build/bdist.linux-x86_64/egg running install_lib creating /usr/local/lib/python3.8/dist-packages/xgboost-1.7.5-py3.8-linux-x86_64.egg ... byte-compiling /usr/local/lib/python3.8/dist-packages/xgboost/__init__.py to __init__.cpython-38.pyc running install_scripts creating /usr/local/bin ... running install_egg_info Writing /usr/local/lib/python3.8/dist-packages/xgboost-1.7.5-py3.8.egg-info
安装 R 版本
如果您想使用 R 编程语言,则可以从 CRAN 存储库安装 XGBoost。使用以下命令为 R 编程安装它:
install.packages('catboost', repos = 'https://cloud.r-project.org/', dependencies=TRUE)
因此,该命令将为 R 编程安装 CatBoost。请参考以下终端上的安装过程输出:
Installing package into '/home/user/R/x86_64-pc-linux-gnu-library/4.1' (as 'lib' is unspecified) trying URL 'https://cloud.r-project.org/src/contrib/xgboost_1.7.5.tar.gz' Content type 'application/x-gzip' length 2277833 bytes (2.2 MB) ================================================== downloaded 2.2 MB * installing *source* package 'xgboost' ... ** package 'xgboost' successfully unpacked and MD5 sums checked ** using staged installation ** libs *** Installing xgboost g++ -std=gnu++11 -I"/usr/share/R/include" -DNDEBUG -I../include -I../third_party/dmlc-core/include -I../third_party/rabit/include -I../third_party/xgboost/src -I../third_party/xgboost/src/../include -fpic -O2 -fPIC -c xgboost_R.cc -o xgboost_R.o ... ... ** R ** demo ** inst ** tests ** preparing package for lazy loading ** help *** installing help indices *** copying figures *** copying HTML documentation ** building package indices ** testing if installed package can be loaded * DONE (xgboost)
广告