JavaScript 二叉搜索树类别
以下是对 BinarySearchTree 类的完整实现 −
示例
class BinarySearchTree { constructor() { // Initialize a root element to null. this.root = null; } insertIter(data) { let node = new this.Node(data); // Check if the tree is empty if (this.root === null) { // Insert as the first element this.root = node; return; } let currNode = this.root; while (true) { if (data < currNode.data) { // Set the value here as we've reached a leaf node if (currNode.left === null) { currNode.left = node; break; } else { currNode = currNode.left; } } else { // Set the value here as we've reached a leaf node if (currNode.right === null) { currNode.right = node; break; } else { currNode = currNode.right; } } } } insertRec(data) { let node = new this.Node(data); // Check if the tree is empty if (this.root === null) { // Insert as the first element this.root = node; } else { insertRecHelper(this.root, node); } } searchIter(data) { let currNode = this.root; while (currNode !== null) { if (currNode.data === data) { // Found the element! return true; } else if (data < currNode.data) { // Go Left as data is smaller than parent currNode = currNode.left; } else { // Go right as data is greater than parent currNode = currNode.right; } } return false; } searchRec(data) { return searchRecHelper(data, this.root); } getMinVal() { if (this.root === null) { throw "Empty tree!"; } let currNode = this.root; while (currNode.left !== null) { currNode = currNode.left; } return currNode.data; } getMaxVal() { if (this.root === null) { throw "Empty tree!"; } let currNode = this.root; while (currNode.right !== null) { currNode = currNode.right; } return currNode.data; } deleteNode(key) { return !(deleteNodeHelper(this.root, key) === false); } inOrder() { inOrderHelper(this.root); } preOrder() { preOrderHelper(this.root); } postOrder() { postOrderHelper(this.root); } } BinarySearchTree.prototype.Node = class { constructor(data, left = null, right = null) { this.data = data; this.left = left; this.right = right; } }; // HELPER METHODS function preOrderHelper(root) { if (root !== null) { console.log(root.data); preOrderHelper(root.left); preOrderHelper(root.right); } } function inOrderHelper(root) { if (root !== null) { inOrderHelper(root.left); console.log(root.data); inOrderHelper(root.right); } } function postOrderHelper(root) { if (root !== null) { postOrderHelper(root.left); postOrderHelper(root.right); console.log(root.data); } } function insertRecHelper(root, node) { if (node.data < root.data) { // Set the value here as we've reached a leaf node if (root.left === null) { root.left = node; } else { insertRecHelper(root.left, node); } } else { // Set the value here as we've reached a leaf node if (root.right === null) { root.right = node; } else { insertRecHelper(root.right, node); } } } function searchRecHelper(data, root) { if (root === null) { // Reached leaf but didn't find it. return false; } if (data < root.data) { return searchRecHelper(data, root.left); } else if (data > root.data) { return searchRecHelper(data, root.right); } // This means element is found return true; } /** * Takes root and key and recursively searches for the key. * If it finds the key, there could be 3 cases: * * 1. This node is a leaf node. * * Example: Removing F * A * / \ * B C * / / \ * D E F * * To remove it, we can simply remove its parent's connection to it. * * A * / \ * B C * / / * D E * * 2. This node is in between the tree somewhere with one child. * * Example: Removing B * A * / \ * B C * / / \ * D E F * * To remove it, we can simply make the child node replace the parent node in the above connection * A * / \ * D C * / \ * E F * * 3. This node has both children. This is a tricky case. * * Example: Removing C * * A * / \ * B C * / / \ * D E F * / / \ * G H I * * In this case, we need to find either a successor or a predecessor of the node and replace this node with * that. For example, If we go with the successor, its successor will be the element just greater than it, * ie, the min element in the right subtree. So after deletion, the tree would look like: * * A * / \ * B H * / / \ * D E F * / \ * G I * * To remove this element, we need to find the parent of the successor, break their link, make successor's left * and right point to current node's left and right. The easier way is to just replace the data from node to be * deleted with successor and delete the sucessor. */ function deleteNodeHelper(root, key) { if (root === null) { // Empty tree return false; } if (key < root.data) { root.left = deleteNodeHelper(root.left, key); return root; } else if (key > root.data) { root.right = deleteNodeHelper(root.right, key); return root; } else { // No children //case 1 - a leaf node if (root.left === null && root.right === null) { root = null; return root; } // Single Child cases if (root.left === null) return root.right; if (root.right === null) return root.left; // Both children, so need to find successor let currNode = root.right; while (currNode.left !== null) { currNode = currNode.left; } root.data = currNode.data; // Delete the value from right subtree. root.right = deleteNodeHelper(root.right, currNode.data); return root; } }
广告