用 Python 中的类数组轴计算具有不同维度的数组的张量点积
提供两个张量 a 和 b,以及包含两个类数组对象(a_axes、b_axes)的类数组对象,按照 a_axes 和 b_axes 指定的轴对 a 和 b 的元素(分量)的积求和。第三个参数可以是单个非负整数标量 N;如果这样,a 的最后 N 个维度和 b 的前 N 个维度进行求和。
步骤
首先,导入所需的库 −
import numpy as np
使用 array() 方法创建两个具有不同尺寸的 numpy 数组 −
arr1 = np.array(range(1, 9)) arr1.shape = (2, 2, 2) arr2 = np.array(('p', 'q', 'r', 's'), dtype=object) arr2.shape = (2, 2)
显示数组 −
print("Array1...\n",arr1) print("\nArray2...\n",arr2)
检查这两个数组的维度 −
print("\nDimensions of Array1...\n",arr1.ndim) print("\nDimensions of Array2...\n",arr2.ndim)
检查这两个数组的形状 −
print("\nShape of Array1...\n",arr1.shape) print("\nShape of Array2...\n",arr2.shape)
要计算具有不同维度的数组的张量点积,请使用 numpy.tensordot() 方法 −
print("\nTensor dot product...\n", np.tensordot(arr1, arr2, ((0, 1), (0, 1))))
例子
import numpy as np # Creating two numpy arrays with different dimensions using the array() method arr1 = np.array(range(1, 9)) arr1.shape = (2, 2, 2) arr2 = np.array(('p', 'q', 'r', 's'), dtype=object) arr2.shape = (2, 2) # Display the arrays print("Array1...\n",arr1) print("\nArray2...\n",arr2) # Check the Dimensions of both the arrays print("\nDimensions of Array1...\n",arr1.ndim) print("\nDimensions of Array2...\n",arr2.ndim) # Check the Shape of both the arrays print("\nShape of Array1...\n",arr1.shape) print("\nShape of Array2...\n",arr2.shape) # To compute the tensor dot product for arrays with different dimensions, use the numpy.tensordot() method in Python print("\nTensor dot product...\n", np.tensordot(arr1, arr2, ((0, 1), (0, 1))))
输出
Array1... [[[1 2] [3 4]] [[5 6] [7 8]]] Array2... [['p' 'q'] ['r' 's']] Dimensions of Array1... 3 Dimensions of Array2... 2 Shape of Array1... (2, 2, 2) Shape of Array2... (2, 2) Tensor dot product... ['pqqqrrrrrsssssss' 'ppqqqqrrrrrrssssssss']
广告