用 Python 中的类数组轴计算具有不同维度的数组的张量点积


提供两个张量 a 和 b,以及包含两个类数组对象(a_axes、b_axes)的类数组对象,按照 a_axes 和 b_axes 指定的轴对 a 和 b 的元素(分量)的积求和。第三个参数可以是单个非负整数标量 N;如果这样,a 的最后 N 个维度和 b 的前 N 个维度进行求和。

步骤

首先,导入所需的库 −

import numpy as np

使用 array() 方法创建两个具有不同尺寸的 numpy 数组 −

arr1 = np.array(range(1, 9))
arr1.shape = (2, 2, 2)

arr2 = np.array(('p', 'q', 'r', 's'), dtype=object)
arr2.shape = (2, 2)

显示数组 −

print("Array1...\n",arr1)
print("\nArray2...\n",arr2)

检查这两个数组的维度 −

print("\nDimensions of Array1...\n",arr1.ndim)
print("\nDimensions of Array2...\n",arr2.ndim)

检查这两个数组的形状 −

print("\nShape of Array1...\n",arr1.shape)
print("\nShape of Array2...\n",arr2.shape)

要计算具有不同维度的数组的张量点积,请使用 numpy.tensordot() 方法 −

print("\nTensor dot product...\n", np.tensordot(arr1, arr2, ((0, 1), (0, 1))))

例子

import numpy as np

# Creating two numpy arrays with different dimensions using the array() method
arr1 = np.array(range(1, 9))
arr1.shape = (2, 2, 2)
arr2 = np.array(('p', 'q', 'r', 's'), dtype=object)
arr2.shape = (2, 2)

# Display the arrays
print("Array1...\n",arr1)
print("\nArray2...\n",arr2)

# Check the Dimensions of both the arrays
print("\nDimensions of Array1...\n",arr1.ndim)
print("\nDimensions of Array2...\n",arr2.ndim)

# Check the Shape of both the arrays
print("\nShape of Array1...\n",arr1.shape)
print("\nShape of Array2...\n",arr2.shape)

# To compute the tensor dot product for arrays with different dimensions, use the numpy.tensordot() method in Python
print("\nTensor dot product...\n", np.tensordot(arr1, arr2, ((0, 1), (0, 1))))

输出

Array1...
[[[1 2]
[3 4]]

[[5 6]
[7 8]]]

Array2...
[['p' 'q']
['r' 's']]

Dimensions of Array1...
3

Dimensions of Array2...
2

Shape of Array1...
(2, 2, 2)

Shape of Array2...
(2, 2)

Tensor dot product...
['pqqqrrrrrsssssss' 'ppqqqqrrrrrrssssssss']

更新时间: 02-Mar-2022

205 次浏览

开启你 职业 生涯

完成本课程获得认证

入门
广告