恒定加速度
介绍
加速度与位移和速度相比,是所有运动变量中最令人印象深刻的。在飞机起飞时坐在座位上、猛踩汽车刹车或驾驶卡丁车快速转弯等情况下,您都能感受到自身的加速度。
任何速度变化的过程都被称为加速度。只有两种加速方式:改变速度或改变方向,或同时改变两者。这是因为速度既有速度又有方向。
什么是恒定加速度?
速度变化量除以时间称为加速度。恒定加速度是指物体速度变化率随时间保持不变的状态。
虽然加速度可以为零、正或负,但它经常与加速互换使用。当直线运动的加速度为正时,这是正确的。在这种运动中,负加速度表示物体正在减速,而零加速度表示速度保持不变。
然而,承认完美的恒定加速度是极其困难的。这是因为物体始终会受到多种力的影响。
例如,如果我们将球从房间的屋顶上掉下来,并在没有其他力的作用下仅受重力影响,那么球也会受到其他大气因素的影响,例如空气阻力。然而,由此产生的加速度差异可能足够小,以至于我们可以继续使用恒定加速度的概念来解释其运动。
重力对恒定加速度的影响
由于地球的重力,所有物体都会向地球中心加速。正如我们已经说过的,从高空坠落的物体几乎会持续加速。如果我们忽略空气阻力的影响以及其他物体几乎不存在的引力,这将是恒定加速度。此外,由重力引起的加速度也与物体的质量无关。
从高空下降的物体以g的频率加速。可以认为向上抛掷的物体在接近其最大可能高度(此时加速度为零)之前,以g的速率减速。达到最高点后,物体将开始下降,并再次以g的速度开始加速。
由重力引起的加速度由常数g表示。它基本等于9.8 ms-2。除非给出更精确的测量值,否则在处理需要使用重力加速度的问题时,应考虑值g = 9.8 ms-2。
恒定加速度在图表中的表示
物体的运动可以用图形表示。在本节中,我们将仔细研究两种常用的图表类型,用于说明以恒定加速度运动的物体的运动。
位移-时间图中的恒定加速度
位移-时间图可用于描述物体的运动。Y轴显示位移 (d),X轴显示时间 (t)。这意味着物体的位移变化由到达那里所需的时间表示。
由于速度是位移变化率,因此在任何给定位置的梯度确定那里的瞬时速度。
如果位移-时间图是一条直线,则加速度为零,速度恒定。
如果图表从原点开始有一条曲线,则表示物体处于恒定加速度下。
在这里,我们看到如果物体处于恒定加速度下,位移-时间图的性质。
速度-时间图中的恒定加速度
速度-时间图也可用于描述物体的运动。通常,Y轴用于表示速度 (v),X轴用于表示时间 (t)。
由于加速度是速度变化率,因此速度-时间图上特定位置的梯度表示该位置物体的加速度。
如果速度-时间图是线性的,则加速度为零,速度恒定。
如果运动是直线且速度为正,则速度-时间图和时间轴所包含的区域也表示物体的位移。
如果图表是一条直线,则表示物体处于恒定加速度下。线的斜率将给出加速度的大小。
用方程表示恒定加速度
有一组五个广泛使用的方程,可用于计算以恒定加速度沿特定方向运动的物体的五个不同变量。这些方程被称为恒定加速度方程。
$\mathrm{S=ut+\frac{1}{2}at^2}$
$\mathrm{S=}$
$\mathrm{ut-\frac{1}{2}at^2}$$\mathrm{S=\frac{1}{2}(u+}$
$\mathrm{u)t}$$\mathrm{}$
$\mathrm{v=u+at}$$\mathrm{}$
$\mathrm{v^2=u^2+2as}$
结论
速度随时间的变化称为加速度。恒定加速度是指物体速度变化率随时间保持不变的状态。
物体的运动可以用图形表示。为此最常用的两种图表类型是速度-时间图和位移-时间图,它们也可以表示处于恒定加速度下的物体的运动。从高空坠落的物体以g的速率加速(恒定的重力加速度)。在直线恒定加速度系统中,有五个常用的运动方程。
常见问题
Q1. 一名赛车手从静止状态开始,以均匀的方式持续加速到 15 m/s,用时 3 秒。加速度的大小是多少?
答:我们知道加速度是速度的变化。
因此,
$$\mathrm{a=\frac{最终速度 -初始速度}{时间变化}}$$
$$\mathrm{a=\frac{V_f-V_i}{\Delta t}}$$
现在,我们知道物体最初处于静止状态
最终速度 = 15 m/s
时间 = 3 秒
根据公式
$$\mathrm{a=\frac{15\:m/s-0\: m/s}{3 s}}$$
$$\mathrm{a=5 m/s^2.}$$
Q2. 一辆汽车以 v=15 ms-1 的速度行驶,一段时间后,汽车停止,25 秒后开始移动,汽车停止加速以达到当时的恒定速度 v=65 ms-1。加速度的大小是多少?
答:我们已知:
初始速度为 15 ms-1
最终速度为 65 ms-1
所用时间为 25 秒
现在,我们知道加速度是 $\mathrm{\frac{v_f-v_i}{t_f-t_i}}$
因此,
$$\mathrm{a=\frac{65 ms^{-1}-15 ms^{-1}}{25\:s}}$$
$$\mathrm{a=\frac{50 ms^{-1}}{25 s}=2ms^{-2}}$$
Q3. 恒定加速度的例子是什么?
答:在日常生活中,我们看到了许多恒定加速度的例子,但最常见的是重力加速度 g。g 的值为 9.8 ms-2。
Q4. 如果我们有一个抛物线形状的位移-时间图,该图表示哪种类型的加速度?
答:位移-时间图的抛物线形状表示具有恒定加速度的物体的运动。