用 Numpy 计算屏蔽元素的数量
要计算屏蔽元素的数量,可以使用 Python Numpy 中的 ma.MaskedArray.count_masked() 方法。该方法返回屏蔽元素的总数(axis=None)或沿给定轴的每个切片屏蔽元素的数量。
axis 参数是要计算的轴。如果为 None(默认),则使用该数组的扁平化版本。
步骤
首先,导入所需的库 −
import numpy as np import numpy.ma as ma
使用 numpy.arange() 方法,创建包含 int 元素的 4x4 数组 −
arr = np.arange(16).reshape((4,4)) print("Array...
", arr) print("
Array type...
", arr.dtype)
获取数组的维度 −
print("
Array Dimensions...
",arr.ndim) print("
Our Array type...
", arr.dtype)
获取数组的形状 −
print("
Our Masked Array Shape...
",arr.shape)
获取数组的元素数量 −
print("
Elements in the Masked Array...
",arr.size)
创建一个屏蔽数组 −
arr = ma.array(arr) arr[0, 1] = ma.masked arr[1, 1] = ma.masked arr[2, 1] = ma.masked arr[2, 2] = ma.masked arr[3, 0] = ma.masked arr[3, 2] = ma.masked arr[3, 3] = ma.masked
要计算屏蔽元素的数量,请使用 ma.MaskedArray.count_masked() 方法 −
print("
Result (number of masked elements)...
",ma.count_masked(arr))
示例
# Python ma.MaskedArray - Count the number of masked elements import numpy as np import numpy.ma as ma # Creating a 4x4 array with int elements using the numpy.arange() method arr = np.arange(16).reshape((4,4)) print("Array...
", arr) print("
Array type...
", arr.dtype) # Get the dimensions of the Array print("
Array Dimensions...
",arr.ndim) print("
Our Array type...
", arr.dtype) # Get the shape of the Array print("
Our Masked Array Shape...
",arr.shape) # Get the number of elements of the Array print("
Elements in the Masked Array...
",arr.size) # Create a masked array arr = ma.array(arr) arr[0, 1] = ma.masked arr[1, 1] = ma.masked arr[2, 1] = ma.masked arr[2, 2] = ma.masked arr[3, 0] = ma.masked arr[3, 2] = ma.masked arr[3, 3] = ma.masked # To count the number of masked elements, use the ma.MaskedArray.count_masked() method print("
Result (number of masked elements)...
",ma.count_masked(arr))
输出
Array... [[ 0 1 2 3] [ 4 5 6 7] [ 8 9 10 11] [12 13 14 15]] Array type... int64 Array Dimensions... 2 Our Array type... int64 Our Masked Array Shape... (4, 4) Elements in the Masked Array... 16 Result (number of masked elements)... 7
广告