获取NumPy中掩码数组的元素数量
要获取掩码数组的元素数量,请在NumPy中使用**ma.MaskedArray.size**属性。array.size返回一个标准的任意精度Python整数。对于其他获取相同值的方法,情况可能并非如此,这些方法返回的是np.int_的实例,并且如果该值在后续计算中可能会溢出固定大小的整数类型,则这一点可能很重要。
掩码要么是nomask,表示关联数组的任何值均无效,要么是一个布尔数组,用于确定关联数组的每个元素的值是否有效。
步骤
首先,导入所需的库:
import numpy as np import numpy.ma as ma
使用numpy.array()方法创建数组:
arr = np.array([[35, 85], [67, 33]]) print("Array...
", arr) print("
Array type...
", arr.dtype) print("
Array itemsize...
", arr.itemsize)
获取数组的维度:
print("Array Dimensions...
",arr.ndim)
获取消耗的总字节数:
print("Array nbytes...
",arr.nbytes)
创建一个掩码数组,并将其中一些标记为无效:
maskArr = ma.masked_array(arr, mask =[[0, 0], [ 0, 1]]) print("
Our Masked Array
", maskArr) print("
Our Masked Array type...
", maskArr.dtype)
获取掩码数组的itemsize:
print("
Our Masked Array itemsize...
", maskArr.itemsize)
获取掩码数组的维度:
print("
Our Masked Array Dimensions...
",maskArr.ndim)
获取掩码数组的形状:
print("
Our Masked Array Shape...
",maskArr.shape)
获取掩码数组的元素数量,在NumPy中使用ma.MaskedArray.size属性:
print("
Elements in the Masked Array...
",maskArr.size)
示例
import numpy as np import numpy.ma as ma arr = np.array([[35, 85], [67, 33]]) print("Array...
", arr) print("
Array type...
", arr.dtype) print("
Array itemsize...
", arr.itemsize) # Get the dimensions of the Array print("Array Dimensions...
",arr.ndim) # Get the total bytes consumed print("Array nbytes...
",arr.nbytes) # Create a masked array and mask some of them as invalid maskArr = ma.masked_array(arr, mask =[[0, 0], [ 0, 1]]) print("
Our Masked Array
", maskArr) print("
Our Masked Array type...
", maskArr.dtype) # Get the itemsize of the Masked Array print("
Our Masked Array itemsize...
", maskArr.itemsize) #Get the dimensions of the Masked Array print("
Our Masked Array Dimensions...
",maskArr.ndim) # Get the shape of the Masked Array print("
Our Masked Array Shape...
",maskArr.shape) # To get the number of elements of the Masked Array, use the ma.MaskedArray.size attribute in Numpy print("
Elements in the Masked Array...
",maskArr.size)
输出
Array... [[35 85] [67 33]] Array type... int64 Array itemsize... 8 Array Dimensions... 2 Array nbytes... 32 Our Masked Array [[35 85] [67 --]] Our Masked Array type... int64 Our Masked Array itemsize... 8 Our Masked Array Dimensions... 2 Our Masked Array Shape... (2, 2) Elements in the Masked Array... 4
广告