获取NumPy中掩码数组的当前形状
要获取掩码数组的形状,请使用NumPy中的ma.MaskedArray.shape属性。shape属性通常用于获取数组的当前形状,但也可以通过为其赋值一个数组维度的元组来就地重塑数组。
与numpy.reshape一样,新的形状维度之一可以是-1,在这种情况下,它的值将根据数组的大小和其余维度推断得出。如果需要复制,则就地重塑数组将失败。
步骤
首先,导入所需的库:
import numpy as np import numpy.ma as ma
使用numpy.array()方法创建一个数组:
arr = np.array([[35, 85], [67, 33]]) print("Array...
", arr) print("
Array type...
", arr.dtype)
获取数组的维度:
print("Array Dimensions...
",arr.ndim)
获取消耗的总字节数:
print("Array nbytes...
",arr.nbytes)
创建一个掩码数组,并将其中一些标记为无效:
maskArr = ma.masked_array(arr, mask =[[0, 0], [ 0, 1]]) print("
Our Masked Array
", maskArr) print("
Our Masked Array type...
", maskArr.dtype)
获取掩码数组的itemsize:
print("
Our Masked Array itemsize...
", maskArr.itemsize)
获取掩码数组的维度:
print("
Our Masked Array Dimensions...
",maskArr.ndim)
获取掩码数组的形状,使用NumPy中的ma.MaskedArray.shape属性:
print("
Our Masked Array Shape...
",maskArr.shape)
示例
import numpy as np import numpy.ma as ma arr = np.array([[35, 85], [67, 33]]) print("Array...", arr) print("Array type...", arr.dtype) print("Array itemsize...", arr.itemsize) # Get the dimensions of the Array print("Array Dimensions...",arr.ndim) # Get the total bytes consumed print("Array nbytes...",arr.nbytes) # Create a masked array and mask some of them as invalid maskArr = ma.masked_array(arr, mask =[[0, 0], [ 0, 1]]) print("Our Masked Array", maskArr) print("Our Masked Array type...", maskArr.dtype) # Get the itemsize of the Masked Array print("Our Masked Array itemsize...", maskArr.itemsize) # Get the dimensions of the Masked Array print("Our Masked Array Dimensions...",maskArr.ndim) # To get the shape of the Masked Array, use the ma.MaskedArray.shape attribute in Numpy print("Our Masked Array Shape...",maskArr.shape)
Explore our latest online courses and learn new skills at your own pace. Enroll and become a certified expert to boost your career.
输出
Array... [[35 85] [67 33]] Array type... int64 Array itemsize... 8 Array Dimensions... 2 Array nbytes... 32 Our Masked Array [[35 85] [67 --]] Our Masked Array type... int64 Our Masked Array itemsize... 8 Our Masked Array Dimensions... 2 Our Masked Array Shape... (2, 2)
广告