从文本形式的记录列表创建recarray并在Numpy中基于索引获取数组


要从文本形式的记录列表创建recarray,请在Python Numpy中使用**numpy.core.records.fromrecords()**方法。名称使用“**names**”参数设置。字段名称,可以指定为逗号分隔的字符串,格式为'col1, col2, col3',也可以指定为字符串列表或元组,格式为['col1', 'col2', 'col3']。可以使用空列表,在这种情况下,使用默认字段名称('f0','f1',…)。数据类型使用“dtype”参数设置。

第一个参数是数据,同一字段中的数据可能是异构的——它们将被提升到最高数据类型。dtype是所有数组的有效dtype。formats、names、titles、aligned、byteorder参数,如果dtype为None,则这些参数将传递给numpy.format_parser以构造dtype。如果formats和dtype都为None,则将自动检测formats。为了更快地处理,请使用元组列表而不是列表的列表。

步骤

首先,导入所需的库:

import numpy as np

使用numpy.array()方法创建一个新数组:

arr1 = np.array([[7, 14, 21], [30, 37, 45]])
arr2 = np.array([[11.3, 18.7, 24], [87.5, 65, 23.8]])
arr3 = np.array([['12', 'bbb', 'john'], ['5.6', '29', 'k']])

显示数组:

print("Array1...
",arr1) print("Array2...
",arr2) print("Array3...
",arr3)

获取数组的类型:

print("
Array1 type...
", arr1.dtype) print("
Array2 type...
", arr2.dtype) print("
Array3 type...
", arr3.dtype)

获取数组的形状:

print("
Array1 Dimensions...
", arr1.ndim) print("
Array2 Dimensions...
", arr2.ndim) print("
Array3 Dimensions...
", arr3.ndim)

要从文本形式的记录列表创建recarray,请在Python Numpy中使用numpy.core.records.fromrecords()方法:

rec = np.core.records.fromrecords([arr1,arr2,arr3], names = 'col1, col2, col3')
print("
Record Array...
",rec)

获取数组值:

print("
Fetching the array1...
",rec[0]) print("
Fetching the array2...
",rec[1]) print("
Fetching the array3...
",rec[2])

示例

import numpy as np

# Create a new array using the numpy.array() method
arr1 = np.array([[7, 14, 21], [30, 37, 45]])
arr2 = np.array([[11.3, 18.7, 24], [87.5, 65, 23.8]])
arr3 = np.array([['12', 'bbb', 'john'], ['5.6', '29', 'k']])

# Display the arrays
print("Array1...
",arr1) print("Array2...
",arr2) print("Array3...
",arr3) # Get the type of the arrays print("
Array1 type...
", arr1.dtype) print("
Array2 type...
", arr2.dtype) print("
Array3 type...
", arr3.dtype) # Get the dimensions of the Arrays print("
Array1 Dimensions...
", arr1.ndim) print("
Array2 Dimensions...
", arr2.ndim) print("
Array3 Dimensions...
", arr3.ndim) # To create a recarray from a list of records in text form, use the numpy.core.records.fromrecords() method in Python Numpy # The names is set using the "names" parameter # The field names, either specified as a comma-separated string in the form 'col1, col2, col3', or as a list or tuple of strings in the form ['col1', 'col2', 'col3']. # An empty list can be used, in that case default field names (‘f0’, ‘f1’, …) are used. # The datatype is set using the "dtype" parameter rec = np.core.records.fromrecords([arr1,arr2,arr3], names = 'col1, col2, col3') print("
Record Array...
",rec) print("
Fetching the array1...
",rec[0]) print("
Fetching the array2...
",rec[1]) print("
Fetching the array3...
",rec[2])

输出

Array1...
[[ 7 14 21]
[30 37 45]]
Array2...
[[11.3 18.7 24. ]
[87.5 65. 23.8]]
Array3...
[['12' 'bbb' 'john']
['5.6' '29' 'k']]

Array1 type...
int64

Array2 type...
float64

Array3 type...
<U4

Array1 Dimensions...
2

Array2 Dimensions...
2

Array3 Dimensions...
2

Record Array...
[[('7', '14', '21') ('30', '37', '45')]
[('11.3', '18.7', '24.0') ('87.5', '65.0', '23.8')]
[('12', 'bbb', 'john') ('5.6', '29', 'k')]]

Fhing the array1...
[('7', '14', '21') ('30', '37', '45')]

Fhing the array2...
[('11.3', '18.7', '24.0') ('87.5', '65.0', '23.8')]

Fhing the array3...
[('12', 'bbb', 'john') ('5.6', '29', 'k')]

更新于:2022年2月10日

231 次浏览

开启您的职业生涯

完成课程获得认证

开始学习
广告