使用 NumPy 从文本形式的记录列表创建 RecArray 并使用名称获取列


要从文本形式的记录列表创建 RecArray,请在 Python NumPy 中使用 **numpy.core.records.fromrecords()** 方法。名称是使用“**names**”参数设置的。字段名称,可以以 'col1, col2, col3' 形式的逗号分隔字符串指定,也可以以 ['col1', 'col2', 'col3'] 形式的字符串列表或元组指定。可以使用空列表,在这种情况下使用默认字段名称('f0'、'f1'、…)。

第一个参数是数据,同一字段中的数据可能是异构的——它们将被提升到最高数据类型。dtype 是所有数组的有效 dtype。格式、名称、标题、对齐、字节序参数、f dtype 为 None,这些参数将传递给 numpy.format_parser 以构造 dtype。如果 formats 和 dtype 都为 None,则这将自动检测格式。为了更快地处理,请使用元组列表而不是列表列表。

步骤

首先,导入所需的库:

import numpy as np

使用 numpy.array() 方法创建一个新数组:

arr1 = np.array([[7, 14, 21], [30, 37, 45]])
arr2 = np.array([[11.3, 18.7, 24], [87.5, 65, 23.8]])
arr3 = np.array([['12', 'bbb', 'john'], ['5.6', '29', 'k']])

显示数组:

print("Array1...
",arr1) print("Array2...
",arr2) print("Array3...
",arr3)

获取数组的类型:

print("
Array1 type...
", arr1.dtype) print("
Array2 type...
", arr2.dtype) print("
Array3 type...
", arr3.dtype)

获取数组的维度:

print("
Array1 Dimensions...
", arr1.ndim) print("
Array2 Dimensions...
", arr2.ndim) print("
Array3 Dimensions...
", arr3.ndim)

要从文本形式的记录列表创建 RecArray,请在 Python NumPy 中使用 numpy.core.records.fromrecords() 方法。名称是使用“names”参数设置的:

rec = np.core.records.fromrecords([arr1,arr2,arr3], names = 'col1, col2, col3')
print("
Record Array...
",rec)

基于名称获取列:

print("
Fetching the column1...
",rec.col1) print("
Fetching the column2...
",rec.col2) print("
Fetching the column3...
",rec.col3)

示例

Open Compiler
import numpy as np # Create a new array using the numpy.array() method arr1 = np.array([[7, 14, 21], [30, 37, 45]]) arr2 = np.array([[11.3, 18.7, 24], [87.5, 65, 23.8]]) arr3 = np.array([['12', 'bbb', 'john'], ['5.6', '29', 'k']]) # Display the arrays print("Array1...",arr1) print("Array2...",arr2) print("Array3...",arr3) # Get the type of the arrays print("Array1 type...", arr1.dtype) print("Array2 type...", arr2.dtype) print("Array3 type...", arr3.dtype) # Get the dimensions of the Arrays print("Array1 Dimensions...", arr1.ndim) print("Array2 Dimensions...", arr2.ndim) print("Array3 Dimensions...", arr3.ndim) # To create a recarray from a list of records in text form, use the numpy.core.records.fromrecords() method in Python Numpy # The names is set using the "names" parameter # The field names, either specified as a comma-separated string in the form 'col1, col2, col3', or as a list or tuple of strings in the form ['col1', 'col2', 'col3']. # An empty list can be used, in that case default field names (‘f0’, ‘f1’, …) are used. rec = np.core.records.fromrecords([arr1,arr2,arr3], names = 'col1, col2, col3') print("Record Array...",rec) # Fetching the columns based on names print("Fetching the column1...",rec.col1) print("Fetching the column2...",rec.col2) print("Fetching the column3...",rec.col3)

Explore our latest online courses and learn new skills at your own pace. Enroll and become a certified expert to boost your career.

输出

Array1...
[[ 7 14 21]
[30 37 45]]
Array2...
[[11.3 18.7 24. ]
[87.5 65. 23.8]]
Array3...
[['12' 'bbb' 'john']
['5.6' '29' 'k']]

Array1 type...
int64

Array2 type...
float64

Array3 type...
<U4

Array1 Dimensions...
2

Array2 Dimensions...
2

Array3 Dimensions...
2

Record Array...
[[('7', '14', '21') ('30', '37', '45')]
[('11.3', '18.7', '24.0') ('87.5', '65.0', '23.8')]
[('12', 'bbb', 'john') ('5.6', '29', 'k')]]

Fhing the column1...
[['7' '30']
['11.3' '87.5']
['12' '5.6']]

Fhing the column2...
[['14' '37']
['18.7' '65.0']
['bbb' '29']]

Fhing the column3...
[['21' '45']
['24.0' '23.8']
['john' 'k']]

更新于: 2022年2月10日

128 次查看

开启你的 职业生涯

通过完成课程获得认证

开始学习
广告