从NumPy中扁平的数组列表创建记录数组并根据索引获取特定值
要从扁平的数组列表创建一个记录数组,请在Python NumPy中使用**numpy.core.records.fromarrays()**方法。名称使用**"names"**参数设置。字段名称,可以以'col1, col2, col3'形式的逗号分隔字符串指定,也可以以['col1', 'col2', 'col3']形式的字符串列表或元组指定。可以使用空列表,在这种情况下使用默认字段名称('f0','f1',…)。
它返回由给定arrayList列组成的记录数组。第一个参数是数组式对象的列表(例如列表、元组和ndarray)。dtype是所有数组的有效dtype。如果dtype为None,则formats、names、titles、aligned、byteorder参数将传递给numpy.format_parser以构造dtype。
步骤
首先,导入所需的库:
import numpy as np
使用numpy.array()方法创建一个新数组:
arr1 = np.array([[5, 10, 15], [20, 25, 30]]) arr2 = np.array([[9, 18, 24], [87.5, 65, 23.8]]) arr3 = np.array([['12', 'bbb', 'john'], ['5.6', '29', 'k']])
显示数组:
print("Array1...
",arr1) print("Array2...
",arr2) print("Array3...
",arr3)
获取数组的类型:
print("
Array1 type...
", arr1.dtype) print("
Array2 type...
", arr2.dtype) print("
Array3 type...
", arr3.dtype)
获取数组的维度:
print("
Array1 Dimensions...
", arr1.ndim) print("
Array2 Dimensions...
", arr2.ndim) print("
Array3 Dimensions...
", arr3.ndim)
要从扁平的数组列表创建一个记录数组,请使用numpy.core.records.fromarrays()方法:
rec = np.core.records.fromarrays([arr1,arr2,arr3], names = 'a,b,c') print("
Record Array...
",rec)
让我们尝试获取值:
print("
Fetching the values...
",rec[0]) print("
Fetching the values...
",rec[1])
示例
import numpy as np # Create a new array using the numpy.array() method arr1 = np.array([[5, 10, 15], [20, 25, 30]]) arr2 = np.array([[9, 18, 24], [87.5, 65, 23.8]]) arr3 = np.array([['12', 'bbb', 'john'], ['5.6', '29', 'k']]) # Display the arrays print("Array1...
",arr1) print("Array2...
",arr2) print("Array3...
",arr3) # Get the type of the arrays print("
Array1 type...
", arr1.dtype) print("
Array2 type...
", arr2.dtype) print("
Array3 type...
", arr3.dtype) # Get the dimensions of the Arrays print("
Array1 Dimensions...
", arr1.ndim) print("
Array2 Dimensions...
", arr2.ndim) print("
Array3 Dimensions...
", arr3.ndim) # To create a record array from a (flat) list of array, use the numpy.core.records.fromarrays() method in Python Numpy # The names is set using the "names" parameter # The field names, either specified as a comma-separated string in the form 'col1, col2, col3', or as a list or tuple of strings in the form ['col1', 'col2', 'col3']. # An empty list can be used, in that case default field names (‘f0’, ‘f1’, …) are used. rec = np.core.records.fromarrays([arr1,arr2,arr3], names = 'a,b,c') print("
Record Array...
",rec) print("
Fetching the values...
",rec[0]) print("
Fetching the values...
",rec[1])
输出
Array1... [[ 5 10 15] [20 25 30]] Array2... [[ 9. 18. 24. ] [87.5 65. 23.8]] Array3... [['12' 'bbb' 'john'] ['5.6' '29' 'k']] Array1 type... int64 Array2 type... float64 Array3 type... <U4 Array1 Dimensions... 2 Array2 Dimensions... 2 Array3 Dimensions... 2 Record Array... [[( 5, 9. , '12') (10, 18. , 'bbb') (15, 24. , 'john')] [(20, 87.5, '5.6') (25, 65. , '29') (30, 23.8, 'k')]] Fhing the values... [( 5, 9., '12') (10, 18., 'bbb') (15, 24., 'john')] Fhing the values... [(20, 87.5, '5.6') (25, 65. , '29') (30, 23.8, 'k')]
广告