从数组(扁平)列表创建记录数组并在 Numpy 中使用名称获取数组


要从数组(扁平)列表创建记录数组,请在 Python Numpy 中使用 **numpy.core.records.fromarrays()** 方法。名称使用 **"names"** 参数设置。字段名称,可以以 'col1, col2, col3' 形式的逗号分隔字符串的形式指定,也可以以 ['col1', 'col2', 'col3'] 形式的字符串列表或元组的形式指定。可以使用空列表,在这种情况下使用默认字段名称('f0','f1',…)。

它返回由给定 arrayList 列组成的记录数组。第一个参数是数组类对象(如列表、元组和 ndarray)的列表。dtype 是所有数组的有效 dtype。格式、名称、标题、对齐、字节序参数,如果 dtype 为 None,则将这些参数传递给 numpy.format_parser 以构造 dtype。

步骤

首先,导入所需的库 -

import numpy as np

使用 numpy.array() 方法创建一个新数组 -

arr1 = np.array([[5, 10, 15], [20, 25, 30]])
arr2 = np.array([[9, 18, 24], [87.5, 65, 23.8]])
arr3 = np.array([['12', 'bbb', 'john'], ['5.6', '29', 'k']])

显示数组 -

print("Array1...
",arr1) print("Array2...
",arr2) print("Array3...
",arr3)

获取数组的类型 -

print("
Array1 type...
", arr1.dtype) print("
Array2 type...
", arr2.dtype) print("
Array3 type...
", arr3.dtype)

获取数组的维度 -

print("
Array1 Dimensions...
", arr1.ndim) print("
Array2 Dimensions...
", arr2.ndim) print("
Array3 Dimensions...
", arr3.ndim)

要从数组(扁平)列表创建记录数组,请在 Python Numpy 中使用 numpy.core.records.fromarrays() 方法。名称使用 "names" 参数设置 -

rec = np.core.records.fromarrays([arr1,arr2,arr3], names = 'i,j,k')
print("
Record Array...
",rec)

根据名称获取数组 -

print("
Fetching the array1...
",rec.i) print("
Fetching the array2...
",rec.j) print("
Fetching the array3...
",rec.k)

示例

import numpy as np

# Create a new array using the numpy.array() method
arr1 = np.array([[5, 10, 15], [20, 25, 30]])
arr2 = np.array([[9, 18, 24], [87.5, 65, 23.8]])
arr3 = np.array([['12', 'bbb', 'john'], ['5.6', '29', 'k']])

# Display the arrays
print("Array1...
",arr1) print("Array2...
",arr2) print("Array3...
",arr3) # Get the type of the arrays print("
Array1 type...
", arr1.dtype) print("
Array2 type...
", arr2.dtype) print("
Array3 type...
", arr3.dtype) # Get the dimensions of the Arrays print("
Array1 Dimensions...
", arr1.ndim) print("
Array2 Dimensions...
", arr2.ndim) print("
Array3 Dimensions...
", arr3.ndim) # To create a record array from a (flat) list of array, use the numpy.core.records.fromarrays() method in Python Numpy # The names is set using the "names" parameter # The field names, either specified as a comma-separated string in the form 'col1, col2, col3', or as a list or tuple of strings in the form ['col1', 'col2', 'col3']. # An empty list can be used, in that case default field names (‘f0’, ‘f1’, …) are used. rec = np.core.records.fromarrays([arr1,arr2,arr3], names = 'i,j,k') print("
Record Array...
",rec) # Fetching the arrays based on names print("
Fetching the array1...
",rec.i) print("
Fetching the array2...
",rec.j) print("
Fetching the array3...
",rec.k)

输出

Array1...
[[ 5 10 15]
[20 25 30]]
Array2...
[[ 9. 18. 24. ]
[87.5 65. 23.8]]
Array3...
[['12' 'bbb' 'john']
['5.6' '29' 'k']]

Array1 type...
int64

Array2 type...
float64

Array3 type...
<U4

Array1 Dimensions...
2

Array2 Dimensions...
2

Array3 Dimensions...
2

Record Array...
[[( 5, 9. , '12') (10, 18. , 'bbb') (15, 24. , 'john')]
[(20, 87.5, '5.6') (25, 65. , '29') (30, 23.8, 'k')]]

Fhing the array1...
[[ 5 10 15]
[20 25 30]]

Fhing the array2...
[[ 9. 18. 24. ]
[87.5 65. 23.8]]

Fhing the array3...
[['12' 'bbb' 'john']
['5.6' '29' 'k']]

更新于: 2022-02-17

128 次查看

启动您的 职业生涯

通过完成课程获得认证

开始
广告

© . All rights reserved.