使用 Python 中的 NumPy 对 Hermite 级数进行微分,并使用标量乘以每个微分
Hermite_e 级数也称为概率论中的 Hermite 多项式或物理学中的 Hermite 多项式。它在数学中可用,用于计算加权 Hermite 多项式的和。在量子力学的一些特定情况下,Hermite_e 级数的权重函数为 e^(−x^2)。
计算 Hermite_e 级数
以下是 Hermite_e 级数的公式。
H_n(x) = (−1)^n\:e^(x^2/2)\:d^n/dx^n(e^(−x^2/2))
其中,
H_n(x) 是 n 次 Hermite 多项式
x 是自变量
d^n/dx^n 表示关于 x 的 n 阶导数。
在 NumPy 库中,我们有一个名为 polynomial.hermite.hermder() 的函数,用于对 Hermite 级数进行微分,并使用标量乘以每个微分。
语法
以下是 polynomial.hermite.hermder() 的语法 -
np.polynomial.hermite.hermder(coefficients,derivate_range,scalar)
示例
在以下示例中,我们将通过在 hermite.hermder() 函数中定义为“scl”的标量值乘以微分后的 Hermite 级数来乘以它。
import numpy as np from numpy.polynomial import hermite coefficients = np.arange(-10,14,2).reshape(2,3,2) print("The coefficient values:",coefficients) diff_coefficicents = hermite.hermder(coefficients,m = 1,scl = 3) print("The derivative of the coefficient values:",diff_coefficicents)
输出
The coefficient values: [[[-10 -8] [ -6 -4] [ -2 0]] [[ 2 4] [ 6 8] [ 10 12]]] The derivative of the coefficient values: [[[12. 24.] [36. 48.] [60. 72.]]]
示例
在以下示例中,我们将为系数创建 Hermite 级数的微分,这些系数采用 2 维数组格式。
import numpy as np from numpy.polynomial import hermite coefficients = np.arange(-40,14,4).reshape(7,2) print("The coefficient values:",coefficients) diff_coefficicents = hermite.hermder(coefficients,m = 2,scl = 1) print("The 2nd order derivative of the coefficient values:",diff_coefficicents)
输出
The coefficient values: [[-40 -36] [-32 -28] [-24 -20] [-16 -12] [ -8 -4] [ 0 4] [ 8 12]] The The 2nd order derivative of the coefficient values: [[-192. -160.] [-384. -288.] [-384. -192.] [ 0. 320.] [ 960. 1440.]]
示例
在以下示例中,我们使用 NumPy 库中的 hermite.hermder() 函数计算 Hermite 级数的微分。
import numpy as np def diff_hermite(coefficients,m,scl): from numpy.polynomial import hermite print("The coefficient values:",coefficients) diff_coefficicents = hermite.hermder(coefficients,m,scl) print("The 2nd order derivative of the coefficient values:",diff_coefficicents) diff_hermite(np.linspace(-10,20,20),3,-3)
输出
The coefficient values: [-10. -8.42105263 -6.84210526 -5.26315789 -3.68421053 -2.10526316 -0.52631579 1.05263158 2.63157895 4.21052632 5.78947368 7.36842105 8.94736842 10.52631579 12.10526316 13.68421053 15.26315789 16.84210526 18.42105263 20. ] The 2nd order derivative of the coefficient values: [ 6.82105263e+03 1.90989474e+04 2.72842105e+04 1.36421053e+04 -4.77473684e+04 -1.90989474e+05 -4.58374737e+05 -9.00378947e+05 -1.57566316e+06 -2.55107368e+06 -3.90164211e+06 -5.71058526e+06 -8.06930526e+06 -1.10773895e+07 -1.48426105e+07 -1.94809263e+07 -2.51164800e+07]
示例
在以下示例中,我们通过传递默认标量值和导数阶数来计算 Hermite 级数的微分。
import numpy as np def diff_hermite(coefficients): from numpy.polynomial import hermite print("The coefficient values:",coefficients) diff_coefficicents = hermite.hermder(coefficients) print("The default order of derivative of the coefficient values:",diff_coefficicents) diff_hermite(np.linspace(-10,20,20))
输出
The coefficient values: [-10. -8.42105263 -6.84210526 -5.26315789 -3.68421053 -2.10526316 -0.52631579 1.05263158 2.63157895 4.21052632 5.78947368 7.36842105 8.94736842 10.52631579 12.10526316 13.68421053 15.26315789 16.84210526 18.42105263 20. ] The default order of derivative of the coefficient values: [-16.84210526 -27.36842105 -31.57894737 -29.47368421 -21.05263158 -6.31578947 14.73684211 42.10526316 75.78947368 115.78947368 162.10526316 214.73684211 273.68421053 338.94736842 410.52631579 488.42105263 572.63157895 663.15789474 760. ]
广告