在 Python 中评估 Hermite_e 级数在点 x 处的数值
要评估 Hermite_e 级数在点 x 处的数值,可以使用 Python Numpy 中的 hermite.hermeval() 方法。第一个参数 x,如果 x 是列表或元组,则将其转换为 ndarray,否则将其保持不变并将其视为标量。在这两种情况下,x 或其元素都必须支持自身以及 c 的元素之间的加法和乘法。
第二个参数 C,一个系数数组,其顺序使得 n 次项的系数包含在 c[n] 中。如果 c 是多维的,则其余索引枚举多个多项式。在二维情况下,系数可以认为存储在 c 的列中。
第三个参数 tensor,如果为 True,则系数数组的形状在右侧扩展为 1,x 的每个维度一个 1。标量对此操作的维度为 0。结果是 c 中的每一列系数都针对 x 的每个元素进行评估。如果为 False,则在评估时将 x 广播到 c 的列上。此关键字在 c 为多维时非常有用。默认值为 True。
步骤
首先,导入所需的库:
import numpy as np from numpy.polynomial import hermite_e as H
创建一个系数数组:
c = np.array([1, 2, 3])
显示数组:
print("Our Array...\n",c)
检查维度:
print("\nDimensions of our Array...\n",c.ndim)
获取数据类型:
print("\nDatatype of our Array object...\n",c.dtype)
获取形状:
print("\nShape of our Array object...\n",c.shape)
要评估 Hermite_e 级数在点 x 处的数值,可以使用 Python Numpy 中的 hermite.hermeval() 方法:
x = np.array([[1,2],[3,4]]) print("\nResult...\n",H.hermeval(x,c))
示例
import numpy as np from numpy.polynomial import hermite_e as H # Create an array of coefficients c = np.array([1, 2, 3]) # Display the array print("Our Array...\n",c) # Check the Dimensions print("\nDimensions of our Array...\n",c.ndim) # Get the Datatype print("\nDatatype of our Array object...\n",c.dtype) # Get the Shape print("\nShape of our Array object...\n",c.shape) # To evaluate a Hermite_e series at points x, use the hermite.hermeval() method in Python Numpy x = np.array([[1,2],[3,4]]) print("\nResult...\n",H.hermeval(x,c))
输出
Our Array... [1 2 3] Dimensions of our Array... 1 Datatype of our Array object... int64 Shape of our Array object... (3,) Result... [[ 3. 14.] [31. 54.]]
广告