Fleury 的算法在 C++ 中用于打印欧拉路径或欧拉环


Fleury 的算法用于显示给定图中的欧拉路径或欧拉环。在此算法中,从一条边开始,它尝试通过删除先前的顶点来移动其他相邻顶点。使用此技巧后,此图中的每个步骤都会变得简单,便于查找欧拉路径或欧拉环。

我们必须检查一些规则才能获得路径或环指示: -

  • 此图必须是欧拉图。
  • 当有两条边时,一条是桥,另一条是非桥时,我们必须首先选择非桥。

选择起点也很重要,我们不能将任何顶点用作起点,如果此图没有奇偶度顶点,则可以选择任何顶点作为起点,否则当一个顶点具有奇偶度时,我们必须首先选择它。

输入 - 图的邻接矩阵

01111
10111
11011
11101
11110

输出 - 欧拉路径或欧拉环: 1--0 0--2 2--1 1--3 3--0 0--4 4--3 3--2

操作

findStartVert(graph)
Input: The given graph.
Output: Find the starting vertex to start algorithm.
Begin
   for all vertex i, in the graph, do
      deg := 0
      for all vertex j, which are adjacent with i, do
         deg := deg + 1
      done
      if deg is odd, then
         return i
      done
      when all degree is even return 0
End
isBridge(u, v)
Input: The start and end node.
Output: True when u and v are forming a bridge.
Begin
   deg := 0
   for all vertex i which are adjacent with v, do
      deg := deg + 1
   done
   if deg > 1, then
      return false
   return true
End
fleuryAlgorithm(start)
Input: The starting vertex.
Output: Display the Euler path or circuit.
Begin
   edge := get the number of edges in the graph //it will not initialize in next
   recursion call
   for all vertex v, which are adjacent with start, do
      if edge <= 1 OR isBridge(start, v) is false, then
         display path from start and v
         remove edge (start,v) from the graph
         decrease edge by 1
         fleuryAlgorithm(v)
   done
End

示例

 演示

#include<iostream>
#include<vector>
#define NODE 5
using namespace std;
int graph[NODE][NODE] = {{0, 1, 1, 1, 1},
   {1, 0, 1, 1, 0},
   {1, 1, 0, 1, 0},
   {1, 1, 1, 0, 1},
   {1, 0, 0, 1, 0}
};
int tempGraph[NODE][NODE];
int findStartVert(){
   for(int i = 0; i<NODE; i++){
      int deg = 0;
      for(int j = 0; j<NODE; j++){
         if(tempGraph[i][j])
         deg++; //increase degree, when connected edge found
      }
      if(deg % 2 != 0) //when degree of vertices are odd
      return i; //i is node with odd degree
   }
   return 0; //when all vertices have even degree, start from 0
}
bool isBridge(int u, int v){
   int deg = 0;
   for(int i = 0; i<NODE; i++)
      if(tempGraph[v][i])
         deg++;
      if(deg>1){
         return false; //the edge is not forming bridge
      }
   return true; //edge forming a bridge
}
int edgeCount(){
   int count = 0;
   for(int i = 0; i<NODE; i++)
      for(int j = i; j<NODE; j++)
         if(tempGraph[i][j])
            count++;
   return count; //count nunber of edges in the graph
}
void fleuryAlgorithm(int start){
   static int edge = edgeCount();
   for(int v = 0; v<NODE; v++){
      if(tempGraph[start][v]){ //when (u,v) edge is presnt and not forming bridge
         if(edge <= 1 || !isBridge(start, v)){
            cout << start << "--" << v << " ";
            tempGraph[start][v] = tempGraph[v][start] = 0; //remove edge from graph
            edge--; //reduce edge
            fleuryAlgorithm(v);
         }
      }
   }
}
int main(){
   for(int i = 0; i<NODE; i++) //copy main graph to tempGraph
   for(int j = 0; j<NODE; j++)
   tempGraph[i][j] = graph[i][j];
   cout << "Euler Path Or Circuit: ";
   fleuryAlgorithm(findStartVert());
}

输出

Euler Path Or Circuit: 1--0 0--2 2--1 1--3 3--0 0--4 4--3 3—2

更新于: 25-9-2019

2K+ 次浏览

开启你的职业生涯

通过完成课程获得认证

开始
广告