欧拉路径与欧拉回路
欧拉路径是一条路径,我们可以通过它精确访问每条边一次。我们可以多次使用相同的顶点。欧拉回路是一种特殊的欧拉路径。当欧拉路径的起始顶点也与该路径的结束顶点相连时,则称为欧拉回路。
为了检测路径和回路,我们必须遵循以下条件:
- 图必须是连通的。
- 当恰好有两个顶点具有奇数度时,它是一条欧拉路径。
- 现在,当无向图的任何顶点都没有奇数度时,它就是一个欧拉回路。
输入和输出
Input: Adjacency matrix of a graph. 0 1 1 1 0 1 0 1 0 0 1 1 0 0 0 1 0 0 0 1 0 0 0 1 0 Output: The graph has an Eulerian path.
算法
traverse(u, visited)
输入:起始节点 u 和已访问节点,用于标记哪个节点已被访问。
输出:遍历所有连通顶点。
Begin mark u as visited for all vertex v, if it is adjacent with u, do if v is not visited, then traverse(v, visited) done End
isConnected(graph)
输入:图。
输出:如果图是连通的,则返回 True。
Begin define visited array for all vertices u in the graph, do make all nodes unvisited traverse(u, visited) if any unvisited node is still remaining, then return false done return true End
isEulerian(Graph)
输入:给定的图。
输出:如果是非欧拉图则返回 0,如果具有欧拉路径则返回 1,如果找到欧拉回路则返回 2。
Begin if isConnected() is false, then return false define list of degree for each node oddDegree := 0 for all vertex i in the graph, do for all vertex j which are connected with i, do increase degree done if degree of vertex i is odd, then increase dooDegree done if oddDegree > 2, then return 0 if oddDegree = 0, then return 2 else return 1 End
示例
#include<iostream> #include<vector> #define NODE 5 using namespace std; int graph[NODE][NODE] = { {0, 1, 1, 1, 0}, {1, 0, 1, 0, 0}, {1, 1, 0, 0, 0}, {1, 0, 0, 0, 1}, {0, 0, 0, 1, 0} }; /* int graph[NODE][NODE] = { {0, 1, 1, 1, 1}, {1, 0, 1, 0, 0}, {1, 1, 0, 0, 0}, {1, 0, 0, 0, 1}, {1, 0, 0, 1, 0} }; */ //uncomment to check Euler Circuit /* int graph[NODE][NODE] = { {0, 1, 1, 1, 0}, {1, 0, 1, 1, 0}, {1, 1, 0, 0, 0}, {1, 1, 0, 0, 1}, {0, 0, 0, 1, 0} }; */ //Uncomment to check Non Eulerian Graph void traverse(int u, bool visited[]) { visited[u] = true; //mark v as visited for(int v = 0; v<NODE; v++) { if(graph[u][v]) { if(!visited[v]) traverse(v, visited); } } } bool isConnected() { bool *vis = new bool[NODE]; //for all vertex u as start point, check whether all nodes are visible or not for(int u; u < NODE; u++) { for(int i = 0; i<NODE; i++) vis[i] = false; //initialize as no node is visited traverse(u, vis); for(int i = 0; i<NODE; i++) { if(!vis[i]) //if there is a node, not visited by traversal, graph is not connected return false; } } return true; } int isEulerian() { if(isConnected() == false) //when graph is not connected return 0; vector<int> degree(NODE, 0); int oddDegree = 0; for(int i = 0; i<NODE; i++) { for(int j = 0; j<NODE; j++) { if(graph[i][j]) degree[i]++; //increase degree, when connected edge found } if(degree[i] % 2 != 0) //when degree of vertices are odd oddDegree++; //count odd degree vertices } if(oddDegree > 2) //when vertices with odd degree greater than 2 return 0; return (oddDegree)?1:2; //when oddDegree is 0, it is Euler circuit, and when 2, it is Euler path } int main() { int check; check = isEulerian(); switch(check) { case 0: cout << "The graph is not an Eulerian graph."; break; case 1: cout << "The graph has an Eulerian path."; break; case 2: cout << "The graph has a Eulerian circuit."; break; } }
输出
The graph has an Eulerian path.
广告