如何使用 Python 对 Pandas 数据帧列进行模糊匹配?
我们将在第一个数据帧中匹配的行与第二个数据帧中的单词进行匹配。对于最为接近的匹配,我们将使用阈值。我们将阈值设为 70,即,当字符串之间的相似度达到 70% 以上时,才发生匹配。
让我们首先创建字典并转换为 panda 数据帧 −
# dictionaries
d1 = {'Car': ["BMW", "Audi", "Lexus", "Mercedes", "Rolls"]}
d2 = {'Car': ["BM", "Audi", "Le", "MERCEDES", "Rolls Royce"]}
# convert dictionaries to pandas dataframes
df1 = pd.DataFrame(d1)
df2 = pd.DataFrame(d2)现在,将数据帧列转换为元素列表以便进行模糊匹配 −
myList1 = df1['Car'].tolist() myList2 = df2['Car'].tolist()
示例
以下为完整代码 −
import pandas as pd
from fuzzywuzzy import fuzz
from fuzzywuzzy import process
# dictionaries
d1 = {'Car': ["BMW", "Audi", "Lexus", "Mercedes", "Rolls"]}
d2 = {'Car': ["BM", "Audi", "Le", "MERCEDES", "Rolls Royce"]}
# convert dictionaries to pandas dataframes
df1 = pd.DataFrame(d1)
df2 = pd.DataFrame(d2)
# printing the pandas dataframes
print("Dataframe 1 =
",df1)
print("Dataframe 2 =
",df2)
# empty lists for storing the matches later
match1 = []
match2 = []
k = []
# converting dataframe column to list of elements for fuzzy matching
myList1 = df1['Car'].tolist()
myList2 = df2['Car'].tolist()
threshold = 70
# iterating myList1 to extract closest match from myList2
for i in myList1:
match1.append(process.extractOne(i, myList2, scorer=fuzz.ratio))
df1['matches'] = match1
for j in df1['matches']:
if j[1] >= threshold:
k.append(j[0])
match2.append(",".join(k))
k = []
# saving matches to df1
df1['matches'] = match2
print("
Matches...")
print(df1)输出
将产生以下输出 −
Dataframe 1 = Car 0 BMW 1 Audi 2 Lexus 3 Mercedes 4 Rolls Dataframe 2 = Car 0 BM 1 Audi 2 Le 3 Mercedes 4 Rolls Royce Matches... Car matches 0 BM BM 1 Audi Audi 2 Lexus 3 Mercedes MERCEDES 4 Rolls
广告
数据结构
网络
RDBMS
操作系统
Java
iOS
HTML
CSS
Android
Python
C 编程
C++
C#
MongoDB
MySQL
Javascript
PHP