在 NumPy 中沿轴 0 连接掩码数组序列


要沿轴 0 连接掩码数组序列,请在 Python NumPy 中使用 **ma.stack()** 方法。轴是使用“**axis**”参数设置的。axis 参数指定结果维度中新轴的索引。例如,如果 axis=0,它将是第一个维度,如果 axis=-1,它将是最后一个维度。

如果提供 out 参数,则它是放置结果的目标位置。形状必须正确,与如果没有指定 out 参数则 stack 将返回的形状匹配。

该函数返回的堆叠数组比输入数组多一个维度。它适用于 _data 和 _mask(如果有)。

步骤

首先,导入所需的库 -

import numpy as np
import numpy.ma as ma

创建数组 1,一个使用 numpy.arange() 方法的 3x3 数组,其中包含 int 元素 -

arr1 = np.arange(9).reshape((3,3))
print("Array1...
", arr1) print("
Array type...
", arr1.dtype)

创建一个掩码数组 1 -

arr1 = ma.array(arr1)

掩码数组 1 -

arr1[0, 1] = ma.masked
arr1[1, 1] = ma.masked

显示掩码数组 1 -

print("
Masked Array1...
",arr1)

创建数组 2,另一个使用 numpy.arange() 方法的 3x3 数组,其中包含 int 元素 -

arr2 = np.arange(9).reshape((3,3))
print("
Array2...
", arr2) print("
Array type...
", arr2.dtype)

创建一个掩码数组 2 -

arr2 = ma.array(arr2)

掩码数组 2 -

arr2[2, 1] = ma.masked
arr2[2, 2] = ma.masked

显示掩码数组 2 -

print("
Masked Array2...
",arr2)

要沿特定轴连接掩码数组序列,请使用 ma.stack() 方法。轴是使用“axis”参数设置的 -

print("
Result of joining arrays...
",ma.stack((arr1, arr2), axis = 0))

示例

import numpy as np
import numpy.ma as ma

# Array 1
# Creating a 3x3 array with int elements using the numpy.arange() method
arr1 = np.arange(9).reshape((3,3))
print("Array1...
", arr1) print("
Array type...
", arr1.dtype) # Get the dimensions of the Array print("
Array Dimensions...
",arr1.ndim) # Get the shape of the Array print("
Our Array Shape...
",arr1.shape) # Get the number of elements of the Array print("
Elements in the Array...
",arr1.size) # Create a masked array arr1 = ma.array(arr1) # Mask Array1 arr1[0, 1] = ma.masked arr1[1, 1] = ma.masked # Display Masked Array 1 print("
Masked Array1...
",arr1) # Array 2 # Creating another 3x3 array with int elements using the numpy.arange() method arr2 = np.arange(9).reshape((3,3)) print("
Array2...
", arr2) print("
Array type...
", arr2.dtype) # Get the dimensions of the Array print("
Array Dimensions...
",arr2.ndim) # Get the shape of the Array print("
Our Array Shape...
",arr2.shape) # Get the number of elements of the Array print("
Elements in the Array...
",arr2.size) # Create a masked array arr2 = ma.array(arr2) # Mask Array2 arr2[2, 1] = ma.masked arr2[2, 2] = ma.masked # Display Masked Array 2 print("
Masked Array2...
",arr2) # To join a sequence of masked arrays along specific axis, use the ma.stack() method in Python Numpy # The axis is set using the "axis" parameter print("
Result of joining arrays...
",ma.stack((arr1, arr2), axis = 0))

输出

Array1...
[[0 1 2]
[3 4 5]
[6 7 8]]

Array type...
int64

Array Dimensions...
2

Our Array Shape...
(3, 3)

Elements in the Array...
9

Masked Array1...
[[0 -- 2]
[3 -- 5]
[6 7 8]]

Array2...
[[0 1 2]
[3 4 5]
[6 7 8]]

Array type...
int64

Array Dimensions...
2

Our Array Shape...
(3, 3)

Elements in the Array...
9

Masked Array2...
[[0 1 2]
[3 4 5]
[6 -- --]]

Result of joining arrays...
[[[0 -- 2]
[3 -- 5]
[6 7 8]]
[[0 1 2]
[3 4 5]
[6 -- --]]]

更新于: 2022 年 2 月 4 日

107 次查看

开启你的 职业生涯

通过完成课程获得认证

开始学习
广告