使用stack()在轴0上连接一系列NumPy数组


要连接一系列数组,请在Python NumPy中使用**numpy.stack()**方法。axis参数指定结果维度中新轴的索引。如果axis=0,它将是第一维;如果axis=-1,它将是最后一维。

该函数返回的堆叠数组比输入数组多一个维度。axis参数指定结果维度中新轴的索引。例如,如果axis=0,它将是第一维;如果axis=-1,它将是最后一维。

如果提供out参数,则将其作为结果的存放目标。其形状必须正确,与未指定out参数时stack返回的形状匹配。

步骤

首先,导入所需的库:

import numpy as np

使用array()方法创建两个NumPy数组。我们插入了int类型的元素:

arr1 = np.array([49, 76, 61, 82, 69, 29])
arr2 = np.array([40, 60, 89, 55, 32, 98])

显示数组:

print("Array 1...
", arr1) print("
Array 2...
", arr2)

获取数组的类型:

print("
Our Array 1 type...
", arr1.dtype) print("
Our Array 2 type...
", arr2.dtype)

获取数组的维度:

print("
Our Array 1 Dimensions...
",arr1.ndim) print("
Our Array 2 Dimensions...
",arr2.ndim)

获取数组的形状:

print("
Our Array 1 Shape...
",arr1.shape) print("
Our Array 2 Shape...
",arr2.shape)

要连接一系列数组,请在Python NumPy中使用numpy.stack()方法。axis参数指定结果维度中新轴的索引。如果axis=0,它将是第一维;如果axis=-1,它将是最后一维:

print("
Result (stack over axis 0)...
",np.stack((arr1, arr2), axis = 0))

示例

import numpy as np

# Creating two numpy arrays using the array() method
# We have inserted elements of int type
arr1 = np.array([49, 76, 61, 82, 69, 29])
arr2 = np.array([40, 60, 89, 55, 32, 98])

# Display the arrays
print("Array 1...
", arr1) print("
Array 2...
", arr2) # Get the type of the arrays print("
Our Array 1 type...
", arr1.dtype) print("
Our Array 2 type...
", arr2.dtype) # Get the dimensions of the Arrays print("
Our Array 1 Dimensions...
",arr1.ndim) print("
Our Array 2 Dimensions...
",arr2.ndim) # Get the shape of the Arrays print("
Our Array 1 Shape...
",arr1.shape) print("
Our Array 2 Shape...
",arr2.shape) # To join a sequence of arrays, use the numpy.stack() method in Python Numpy # The axis parameter specifies the index of the new axis in the dimensions of the result. # If axis=0 it will be the first dimension and if axis=-1 it will be the last dimension. print("
Result (stack over axis 0)...
",np.stack((arr1, arr2), axis = 0))

输出

Array 1...
[49 76 61 82 69 29]

Array 2...
[40 60 89 55 32 98]

Our Array 1 type...
int64

Our Array 2 type...
int64

Our Array 1 Dimensions...
1

Our Array 2 Dimensions...
1

Our Array 1 Shape...
(6,)

Our Array 2 Shape...
(6,)

Result (stack over axis 0)...
[[49 76 61 82 69 29]
[40 60 89 55 32 98]]

更新于:2022年2月18日

93 次浏览

启动您的职业生涯

完成课程获得认证

开始
广告