在 NumPy 中沿深度方向(第三轴)依次堆叠掩码数组
要在深度方向(沿第三轴)依次堆叠掩码数组,请在 Python NumPy 中使用 **ma.dstack()** 方法。这等效于在将形状为 (M,N) 的二维数组重塑为 (M,N,1) 以及将形状为 (N,) 的一维数组重塑为 (1,N,1) 之后,沿第三轴进行连接。重建由 dsplit 分割的数组。
对于最多 3 维的数组,此函数最有意义。例如,对于具有高度(第一轴)、宽度(第二轴)和 r/g/b 通道(第三轴)的像素数据。函数 concatenate、stack 和 block 提供更通用的堆叠和连接操作。
参数是必须沿除第三轴之外的所有轴具有相同形状的数组。一维或二维数组必须具有相同的形状。该函数返回由堆叠给定数组形成的数组,将至少为 3 维。
步骤
首先,导入所需的库 -
import numpy as np import numpy.ma as ma
创建数组 1,一个使用 numpy.arange() 方法的包含整数元素的 3x3 数组 -
arr1 = np.arange(9).reshape((3,3)) print("Array1...
", arr1) print("
Array type...
", arr1.dtype)
创建掩码数组 1 -
arr1 = ma.array(arr1)
掩码数组 1 -
arr1[0, 1] = ma.masked arr1[1, 1] = ma.masked
显示掩码数组 1 -
print("
Masked Array1...
",arr1)
创建数组 2,另一个使用 numpy.arange() 方法的包含整数元素的 3x3 数组 -
arr2 = np.arange(9).reshape((3,3)) print("
Array2...
", arr2) print("
Array type...
", arr2.dtype)
创建掩码数组 2 -
arr2 = ma.array(arr2)
掩码数组 2 -
arr2[2, 1] = ma.masked arr2[2, 2] = ma.masked
显示掩码数组 2 -
print("
Masked Array2...
",arr2)
要在深度方向(沿第三轴)依次堆叠掩码数组,请使用 ma.dstack() 方法 -
print("
Result of stacking arrays depth wise...
",ma.dstack((arr1, arr2)))
示例
# Python ma.MaskedArray - Stack masked arrays in sequence depth wise (along third axis) import numpy as np import numpy.ma as ma # Array 1 # Creating a 3x3 array with int elements using the numpy.arange() method arr1 = np.arange(9).reshape((3,3)) print("Array1...
", arr1) print("
Array type...
", arr1.dtype) # Get the dimensions of the Array print("
Array Dimensions...
",arr1.ndim) # Get the shape of the Array print("
Our Array Shape...
",arr1.shape) # Get the number of elements of the Array print("
Elements in the Array...
",arr1.size) # Create a masked array arr1 = ma.array(arr1) # Mask Array1 arr1[0, 1] = ma.masked arr1[1, 1] = ma.masked # Display Masked Array 1 print("
Masked Array1...
",arr1) # Array 2 # Creating another 3x3 array with int elements using the numpy.arange() method arr2 = np.arange(9).reshape((3,3)) print("
Array2...
", arr2) print("
Array type...
", arr2.dtype) # Get the dimensions of the Array print("
Array Dimensions...
",arr2.ndim) # Get the shape of the Array print("
Our Array Shape...
",arr2.shape) # Get the number of elements of the Array print("
Elements in the Array...
",arr2.size) # Create a masked array arr2 = ma.array(arr2) # Mask Array2 arr2[2, 1] = ma.masked arr2[2, 2] = ma.masked # Display Masked Array 2 print("
Masked Array2...
",arr2) # To stack masked arrays in sequence depth wise (along third axis), use the ma.dstack() method in Python Numpy print("
Result of stacking arrays depth wise...
",ma.dstack((arr1, arr2)))
输出
Array1... [[0 1 2] [3 4 5] [6 7 8]] Array type... int64 Array Dimensions... 2 Our Array Shape... (3, 3) Elements in the Array... 9 Masked Array1... [[0 -- 2] [3 -- 5] [6 7 8]] Array2... [[0 1 2] [3 4 5] [6 7 8]] Array type... int64 Array Dimensions... 2 Our Array Shape... (3, 3) Elements in the Array... 9 Masked Array2... [[0 1 2] [3 4 5] [6 -- --]] Result of stacking arrays depth wise... [[[0 0] [-- 1] [2 2]] [[3 3] [-- 4] [5 5]] [[6 6] [7 --] [8 --]]]
广告