求m的值,使得
"
已知: $5^{2m-1} =25^{m-1} +100$
要求: 求m的值。
解答
我们知道,
$(a^m)^n = a^{m \times n}$
$5^{2m-1} =25^{m-1} +100$
$5^{2m-1} -25^{m-1} =100$
$5^{2m-1} -(5^2)^{m-1} =100$
$5^{2m-1} -5^{2(m-1)} =100 \implies 5^{2m-1} -5^{2m-2} =100$
$\frac{5^{2m}}{5} -\frac{5^{2m}}{5^2} =100$
$\frac{5^{2m}}{5} -\frac{5^{2m}}{25} =100$
$\frac{5 \times 5^{2m} -5^{2m}}{25} =100$
$5^{2m}(5-1) =100 \times 25 \implies 5^{2m}(4) =25 \times 4 \times 25 \implies 5^{2m} = 5^4$
$2m=4 \implies m=2$
m的值为2。
广告