Loading [MathJax]/jax/output/HTML-CSS/jax.js

证明:(1+cotAcosecA)(1+tanA+secA)=2


已知: (1+cotAcosecA)(1+tanA+secA)=2

求: 证明 L.H.S.=R.H.S.

解:

L.H.S.=(1+cotAcosecA)(1+tanA+secA) 

=(1+cosAsinA1sinA)(1+sinAcosA+1cosA) 

=(sinA+cosA1sinA)(cosA+sinA+1cosA)

=((sinA+cosA1)(sinA+cosA+1)sinAcosA)

=(sinA+cosA)2(1)2sinAcosA

=sin2A+cos2A+2sinAcosA1sinAcosA

=1+2sinAcosA1sinAcosA

=2sinAcosAsinAcosA

=2

R.H.S.

因此,已证明 (1+cotAcosecA)(1+tanA+secA)=2.

更新时间: 2022-10-10

69 次浏览

开启您的 职业生涯

完成课程并获得认证

入门
广告